home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Complete Linux
/
Complete Linux.iso
/
xwindows
/
demos
/
xfract_1.z
/
xfract_1
/
xfractint-1.06
/
fractals.c
< prev
next >
Wrap
C/C++ Source or Header
|
1992-09-28
|
88KB
|
3,380 lines
/*
FRACTALS.C, FRACTALP.C and CALCFRAC.C actually calculate the fractal
images (well, SOMEBODY had to do it!). The modules are set up so that
all logic that is independent of any fractal-specific code is in
CALCFRAC.C, the code that IS fractal-specific is in FRACTALS.C, and the
struscture that ties (we hope!) everything together is in FRACTALP.C.
Original author Tim Wegner, but just about ALL the authors have
contributed SOME code to this routine at one time or another, or
contributed to one of the many massive restructurings.
The Fractal-specific routines are divided into three categories:
1. Routines that are called once-per-orbit to calculate the orbit
value. These have names like "XxxxFractal", and their function
pointers are stored in fractalspecific[fractype].orbitcalc. EVERY
new fractal type needs one of these. Return 0 to continue iterations,
1 if we're done. Results for integer fractals are left in 'lnew.x' and
'lnew.y', for floating point fractals in 'new.x' and 'new.y'.
2. Routines that are called once per pixel to set various variables
prior to the orbit calculation. These have names like xxx_per_pixel
and are fairly generic - chances are one is right for your new type.
They are stored in fractalspecific[fractype].per_pixel.
3. Routines that are called once per screen to set various variables.
These have names like XxxxSetup, and are stored in
fractalspecific[fractype].per_image.
4. The main fractal routine. Usually this will be StandardFractal(),
but if you have written a stand-alone fractal routine independent
of the StandardFractal mechanisms, your routine name goes here,
stored in fractalspecific[fractype].calctype.per_image.
Adding a new fractal type should be simply a matter of adding an item
to the 'fractalspecific' structure, writing (or re-using one of the existing)
an appropriate setup, per_image, per_pixel, and orbit routines.
-------------------------------------------------------------------- */
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <limits.h>
#include <string.h>
#ifdef __TURBOC__
#include <alloc.h>
#else
#include <malloc.h>
#endif
#include "fractint.h"
#include "mpmath.h"
#include "helpdefs.h"
#include "fractype.h"
#include "prototyp.h"
#define NEWTONDEGREELIMIT 100
extern struct complex initorbit;
extern struct lcomplex linitorbit;
extern char useinitorbit;
extern double fgLimit;
extern int distest;
#define CMPLXsqr_old(out) \
(out).y = (old.x+old.x) * old.y;\
(out).x = tempsqrx - tempsqry
#define CMPLXpwr(arg1,arg2,out) (out)= ComplexPower((arg1), (arg2))
#define CMPLXmult1(arg1,arg2,out) Arg2->d = (arg1); Arg1->d = (arg2);\
dStkMul(); Arg1++; Arg2++; (out) = Arg2->d
#define CMPLXmult(arg1,arg2,out) \
{\
CMPLX TmP;\
TmP.x = (arg1).x*(arg2).x - (arg1).y*(arg2).y;\
TmP.y = (arg1).x*(arg2).y + (arg1).y*(arg2).x;\
(out) = TmP;\
}
#define CMPLXadd(arg1,arg2,out) \
(out).x = (arg1).x + (arg2).x; (out).y = (arg1).y + (arg2).y
#define CMPLXsub(arg1,arg2,out) \
(out).x = (arg1).x - (arg2).x; (out).y = (arg1).y - (arg2).y
#define CMPLXtimesreal(arg,real,out) \
(out).x = (arg).x*(real);\
(out).y = (arg).y*(real)
#define CMPLXrecip(arg,out) \
{ double denom; denom = sqr((arg).x) + sqr((arg).y);\
if(denom==0.0) {(out).x = 1.0e10;(out).y = 1.0e10;}else\
{ (out).x = (arg).x/denom;\
(out).y = -(arg).y/denom;}}
extern int xshift, yshift;
extern int biomorph;
extern int forcesymmetry;
extern int symmetry;
LCMPLX lcoefficient,lold,lnew,lparm, linit,ltmp,ltmp2,lparm2;
long ltempsqrx,ltempsqry;
extern int decomp[];
extern double param[];
extern int potflag; /* potential enabled? */
extern double f_radius,f_xcenter,f_ycenter; /* inversion radius, center */
extern double xxmin,xxmax,yymin,yymax; /* corners */
extern int overflow;
extern int integerfractal; /* TRUE if fractal uses integer math */
int maxcolor;
int root, degree,basin;
double floatmin,floatmax;
double roverd, d1overd, threshold;
CMPLX tmp2;
extern CMPLX init,tmp,old,new,saved;
CMPLX staticroots[16]; /* roots array for degree 16 or less */
CMPLX *roots = staticroots;
struct MPC *MPCroots;
extern int color, row, col;
extern int invert;
extern double far *dx0, far *dy0;
extern double far *dx1, far *dy1;
long FgHalf;
CMPLX one;
CMPLX pwr;
CMPLX Coefficient;
extern int colors; /* maximum colors available */
extern int inside; /* "inside" color to use */
extern int outside; /* "outside" color to use */
extern int finattract;
extern int fractype; /* fractal type */
extern int debugflag; /* for debugging purposes */
extern double param[]; /* parameters */
extern long far *lx0, far *ly0; /* X, Y points */
extern long far *lx1, far *ly1; /* X, Y points */
extern long delx,dely; /* X, Y increments */
extern long delmin; /* min(max(dx),max(dy) */
extern double ddelmin; /* min(max(dx),max(dy) */
extern long fudge; /* fudge factor (2**n) */
extern int bitshift; /* bit shift for fudge */
int bitshiftless1; /* bit shift less 1 */
#ifndef sqr
#define sqr(x) ((x)*(x))
#endif
#ifndef lsqr
#define lsqr(x) (multiply((x),(x),bitshift))
#endif
#define modulus(z) (sqr((z).x)+sqr((z).y))
#define conjugate(pz) ((pz)->y = 0.0 - (pz)->y)
#define distance(z1,z2) (sqr((z1).x-(z2).x)+sqr((z1).y-(z2).y))
#define pMPsqr(z) (*pMPmul((z),(z)))
#define MPdistance(z1,z2) (*pMPadd(pMPsqr(*pMPsub((z1).x,(z2).x)),pMPsqr(*pMPsub((z1).y,(z2).y))))
double twopi = PI*2.0;
static int c_exp;
/* These are local but I don't want to pass them as parameters */
CMPLX lambda;
extern double magnitude, rqlim, rqlim2;
CMPLX parm,parm2;
CMPLX *floatparm;
LCMPLX *longparm; /* used here and in jb.c */
extern int (*calctype)();
extern unsigned long lm; /* magnitude limit (CALCMAND) */
/* -------------------------------------------------------------------- */
/* These variables are external for speed's sake only */
/* -------------------------------------------------------------------- */
double sinx,cosx,sinhx,coshx;
double siny,cosy,sinhy,coshy;
double tmpexp;
double tempsqrx,tempsqry;
double foldxinitx,foldyinity,foldxinity,foldyinitx;
long oldxinitx,oldyinity,oldxinity,oldyinitx;
long longtmp;
extern long lmagnitud, llimit, llimit2, l16triglim;
extern periodicitycheck;
extern char floatflag;
/* These are for quaternions */
double qc,qci,qcj,qck;
/* temporary variables for trig use */
long lcosx, lcoshx, lsinx, lsinhx;
long lcosy, lcoshy, lsiny, lsinhy;
/*
** details of finite attractors (required for Magnet Fractals)
** (can also be used in "coloring in" the lakes of Julia types)
*/
extern int attractors; /* number of finite attractors */
extern CMPLX attr[]; /* finite attractor values (f.p) */
extern LCMPLX lattr[]; /* finite attractor values (int) */
extern int attrperiod[]; /* finite attractor period */
/*
** pre-calculated values for fractal types Magnet2M & Magnet2J
*/
CMPLX T_Cm1; /* 3 * (floatparm - 1) */
CMPLX T_Cm2; /* 3 * (floatparm - 2) */
CMPLX T_Cm1Cm2; /* (floatparm - 1) * (floatparm - 2) */
void FloatPreCalcMagnet2() /* precalculation for Magnet2 (M & J) for speed */
{
T_Cm1.x = floatparm->x - 1.0; T_Cm1.y = floatparm->y;
T_Cm2.x = floatparm->x - 2.0; T_Cm2.y = floatparm->y;
T_Cm1Cm2.x = (T_Cm1.x * T_Cm2.x) - (T_Cm1.y * T_Cm2.y);
T_Cm1Cm2.y = (T_Cm1.x * T_Cm2.y) + (T_Cm1.y * T_Cm2.x);
T_Cm1.x += T_Cm1.x + T_Cm1.x; T_Cm1.y += T_Cm1.y + T_Cm1.y;
T_Cm2.x += T_Cm2.x + T_Cm2.x; T_Cm2.y += T_Cm2.y + T_Cm2.y;
}
/* -------------------------------------------------------------------- */
/* Bailout Routines Macros */
/* -------------------------------------------------------------------- */
static int near floatbailout()
{
if ( ( magnitude = ( tempsqrx=sqr(new.x) )
+ ( tempsqry=sqr(new.y) ) ) >= rqlim ) return(1);
old = new;
return(0);
}
/* longbailout() is equivalent to next */
#define LONGBAILOUT() \
ltempsqrx = lsqr(lnew.x); ltempsqry = lsqr(lnew.y);\
lmagnitud = ltempsqrx + ltempsqry;\
if (lmagnitud >= llimit || lmagnitud < 0 || labs(lnew.x) > llimit2\
|| labs(lnew.y) > llimit2 || overflow) \
{ overflow=0;return(1);}\
lold = lnew;
#define FLOATTRIGBAILOUT() \
if (fabs(old.y) >= rqlim2) return(1);
#define LONGTRIGBAILOUT() \
if(labs(lold.y) >= llimit2 || overflow) { overflow=0;return(1);}
#define LONGXYTRIGBAILOUT() \
if(labs(lold.x) >= llimit2 || labs(lold.y) >= llimit2 || overflow)\
{ overflow=0;return(1);}
#define FLOATXYTRIGBAILOUT() \
if (fabs(old.x) >= rqlim2 || fabs(old.y) >= rqlim2) return(1);
#define FLOATHTRIGBAILOUT() \
if (fabs(old.x) >= rqlim2) return(1);
#define LONGHTRIGBAILOUT() \
if(labs(lold.x) >= llimit2 || overflow) { overflow=0;return(1);}
#define TRIG16CHECK(X) \
if(labs((X)) > l16triglim || overflow) { overflow=0;return(1);}
#define FLOATEXPBAILOUT() \
if (fabs(old.y) >= 1.0e8) return(1);\
if (fabs(old.x) >= 6.4e2) return(1);
#define LONGEXPBAILOUT() \
if (labs(lold.y) >= (1000L<<bitshift)) return(1);\
if (labs(lold.x) >= (8L<<bitshift)) return(1);
#if 0
/* this define uses usual trig instead of fast trig */
#define FPUsincos(px,psinx,pcosx) \
*(psinx) = sin(*(px));\
*(pcosx) = cos(*(px));
#define FPUsinhcosh(px,psinhx,pcoshx) \
*(psinhx) = sinh(*(px));\
*(pcoshx) = cosh(*(px));
#endif
#define LTRIGARG(X) \
if(labs((X)) > l16triglim)\
{\
double tmp;\
tmp = (X);\
tmp /= fudge;\
tmp = fmod(tmp,twopi);\
tmp *= fudge;\
(X) = tmp;\
}\
static int near Halleybailout()
{
if ( fabs(modulus(new)-modulus(old)) < parm2.x)
return(1);
old = new;
return(0);
}
#ifndef XFRACT
#define MPCmod(m) (*pMPadd(*pMPmul((m).x, (m).x), *pMPmul((m).y, (m).y)))
struct MPC mpcold, mpcnew, mpctmp, mpctmp1;
struct MP mptmpparm2x;
static int near MPCHalleybailout()
{
static struct MP mptmpbailout;
mptmpbailout = *MPabs(*pMPsub(MPCmod(mpcnew), MPCmod(mpcold)));
if (pMPcmp(mptmpbailout, mptmpparm2x) < 0)
return(1);
mpcold = mpcnew;
return(0);
}
#endif
/* -------------------------------------------------------------------- */
/* Fractal (once per iteration) routines */
/* -------------------------------------------------------------------- */
static double xt, yt, t2;
/* Raise complex number (base) to the (exp) power, storing the result
** in complex (result).
*/
void cpower(CMPLX *base, int exp, CMPLX *result)
{
if (exp<0) {
cpower(base,-exp,result);
CMPLXrecip(*result,*result);
return;
}
xt = base->x; yt = base->y;
if (exp & 1)
{
result->x = xt;
result->y = yt;
}
else
{
result->x = 1.0;
result->y = 0.0;
}
exp >>= 1;
while (exp)
{
t2 = xt * xt - yt * yt;
yt = 2 * xt * yt;
xt = t2;
if (exp & 1)
{
t2 = xt * result->x - yt * result->y;
result->y = result->y * xt + yt * result->x;
result->x = t2;
}
exp >>= 1;
}
}
/* long version */
static long lxt, lyt, lt2;
lcpower(LCMPLX *base, int exp, LCMPLX *result, int bitshift)
{
static long maxarg;
maxarg = 64L<<bitshift;
overflow = 0;
lxt = base->x; lyt = base->y;
if (exp & 1)
{
result->x = lxt;
result->y = lyt;
}
else
{
result->x = 1L<<bitshift;
result->y = 0L;
}
exp >>= 1;
while (exp)
{
/*
if(labs(lxt) >= maxarg || labs(lyt) >= maxarg)
return(-1);
*/
lt2 = multiply(lxt, lxt, bitshift) - multiply(lyt,lyt,bitshift);
lyt = multiply(lxt,lyt,bitshiftless1);
if(overflow)
return(overflow);
lxt = lt2;
if (exp & 1)
{
lt2 = multiply(lxt,result->x, bitshift) - multiply(lyt,result->y,bitshift);
result->y = multiply(result->y,lxt,bitshift) + multiply(lyt,result->x,bitshift);
result->x = lt2;
}
exp >>= 1;
}
if(result->x == 0 && result->y == 0)
overflow = 1;
return(overflow);
}
#if 0
z_to_the_z(CMPLX *z, CMPLX *out)
{
static CMPLX tmp1,tmp2;
/* raises complex z to the z power */
int errno_xxx;
errno_xxx = 0;
if(fabs(z->x) < DBL_EPSILON) return(-1);
/* log(x + iy) = 1/2(log(x*x + y*y) + i(arc_tan(y/x)) */
tmp1.x = .5*log(sqr(z->x)+sqr(z->y));
/* the fabs in next line added to prevent discontinuity in image */
tmp1.y = atan(fabs(z->y/z->x));
/* log(z)*z */
tmp2.x = tmp1.x * z->x - tmp1.y * z->y;
tmp2.y = tmp1.x * z->y + tmp1.y * z->x;
/* z*z = e**(log(z)*z) */
/* e**(x + iy) = e**x * (cos(y) + isin(y)) */
tmpexp = exp(tmp2.x);
FPUsincos(&tmp2.y,&siny,&cosy);
out->x = tmpexp*cosy;
out->y = tmpexp*siny;
return(errno_xxx);
}
#endif
int complex_div(CMPLX arg1,CMPLX arg2,CMPLX *pz);
int complex_mult(CMPLX arg1,CMPLX arg2,CMPLX *pz);
#ifdef XFRACT /* fractint uses the NewtonFractal2 code in newton.asm */
/* Distance of complex z from unit circle */
#define DIST1(z) (((z).x-1.0)*((z).x-1.0)+((z).y)*((z).y))
#define LDIST1(z) (lsqr((((z).x)-fudge)) + lsqr(((z).y)))
int NewtonFractal2()
{
static char start=1;
if(start)
{
start = 0;
}
cpower(&old, degree-1, &tmp);
complex_mult(tmp, old, &new);
if (DIST1(new) < threshold)
{
if(fractype==NEWTBASIN || fractype==MPNEWTBASIN)
{
int tmpcolor;
int i;
tmpcolor = -1;
/* this code determines which degree-th root of root the
Newton formula converges to. The roots of a 1 are
distributed on a circle of radius 1 about the origin. */
for(i=0;i<degree;i++)
/* color in alternating shades with iteration according to
which root of 1 it converged to */
if(distance(roots[i],old) < threshold)
{
if (basin==2) {
tmpcolor = 1+(i&7)+((color&1)<<3);
} else {
tmpcolor = 1+i;
}
break;
}
if(tmpcolor == -1)
color = maxcolor;
else
color = tmpcolor;
}
return(1);
}
new.x = d1overd * new.x + roverd;
new.y *= d1overd;
/* Watch for divide underflow */
if ((t2 = tmp.x * tmp.x + tmp.y * tmp.y) < FLT_MIN)
return(1);
else
{
t2 = 1.0 / t2;
old.x = t2 * (new.x * tmp.x + new.y * tmp.y);
old.y = t2 * (new.y * tmp.x - new.x * tmp.y);
}
return(0);
}
#endif /* newton code only used by xfractint */
complex_mult(arg1,arg2,pz)
CMPLX arg1,arg2,*pz;
{
pz->x = arg1.x*arg2.x - arg1.y*arg2.y;
pz->y = arg1.x*arg2.y+arg1.y*arg2.x;
return(0);
}
complex_div(numerator,denominator,pout)
CMPLX numerator,denominator,*pout;
{
double mod;
if((mod = modulus(denominator)) < FLT_MIN)
return(1);
conjugate(&denominator);
complex_mult(numerator,denominator,pout);
pout->x = pout->x/mod;
pout->y = pout->y/mod;
return(0);
}
#ifndef XFRACT
struct MP mproverd, mpd1overd, mpthreshold,sqrmpthreshold;
struct MP mpt2;
struct MP mpone;
extern struct MPC MPCone;
extern int MPOverflow;
#endif
int MPCNewtonFractal()
{
#ifndef XFRACT
MPOverflow = 0;
mpctmp = MPCpow(mpcold,degree-1);
mpcnew.x = *pMPsub(*pMPmul(mpctmp.x,mpcold.x),*pMPmul(mpctmp.y,mpcold.y));
mpcnew.y = *pMPadd(*pMPmul(mpctmp.x,mpcold.y),*pMPmul(mpctmp.y,mpcold.x));
mpctmp1.x = *pMPsub(mpcnew.x, MPCone.x);
mpctmp1.y = *pMPsub(mpcnew.y, MPCone.y);
if(pMPcmp(MPCmod(mpctmp1),mpthreshold)< 0)
{
if(fractype==MPNEWTBASIN)
{
int tmpcolor;
int i;
tmpcolor = -1;
for(i=0;i<degree;i++)
if(pMPcmp(MPdistance(MPCroots[i],mpcold),mpthreshold) < 0)
{
if(basin==2)
tmpcolor = 1+(i&7) + ((color&1)<<3);
else
tmpcolor = 1+i;
break;
}
if(tmpcolor == -1)
color = maxcolor;
else
color = tmpcolor;
}
return(1);
}
mpcnew.x = *pMPadd(*pMPmul(mpd1overd,mpcnew.x),mproverd);
mpcnew.y = *pMPmul(mpcnew.y,mpd1overd);
mpt2 = MPCmod(mpctmp);
mpt2 = *pMPdiv(mpone,mpt2);
mpcold.x = *pMPmul(mpt2,(*pMPadd(*pMPmul(mpcnew.x,mpctmp.x),*pMPmul(mpcnew.y,mpctmp.y))));
mpcold.y = *pMPmul(mpt2,(*pMPsub(*pMPmul(mpcnew.y,mpctmp.x),*pMPmul(mpcnew.x,mpctmp.y))));
new.x = *pMP2d(mpcold.x);
new.y = *pMP2d(mpcold.y);
return(MPOverflow);
#endif
}
Barnsley1Fractal()
{
#ifndef XFRACT
/* Barnsley's Mandelbrot type M1 from "Fractals
Everywhere" by Michael Barnsley, p. 322 */
/* calculate intermediate products */
oldxinitx = multiply(lold.x, longparm->x, bitshift);
oldyinity = multiply(lold.y, longparm->y, bitshift);
oldxinity = multiply(lold.x, longparm->y, bitshift);
oldyinitx = multiply(lold.y, longparm->x, bitshift);
/* orbit calculation */
if(lold.x >= 0)
{
lnew.x = (oldxinitx - longparm->x - oldyinity);
lnew.y = (oldyinitx - longparm->y + oldxinity);
}
else
{
lnew.x = (oldxinitx + longparm->x - oldyinity);
lnew.y = (oldyinitx + longparm->y + oldxinity);
}
return(longbailout());
#endif
}
Barnsley1FPFractal()
{
/* Barnsley's Mandelbrot type M1 from "Fractals
Everywhere" by Michael Barnsley, p. 322 */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
/* calculate intermediate products */
foldxinitx = old.x * floatparm->x;
foldyinity = old.y * floatparm->y;
foldxinity = old.x * floatparm->y;
foldyinitx = old.y * floatparm->x;
/* orbit calculation */
if(old.x >= 0)
{
new.x = (foldxinitx - floatparm->x - foldyinity);
new.y = (foldyinitx - floatparm->y + foldxinity);
}
else
{
new.x = (foldxinitx + floatparm->x - foldyinity);
new.y = (foldyinitx + floatparm->y + foldxinity);
}
return(floatbailout());
}
Barnsley2Fractal()
{
#ifndef XFRACT
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 331, example 4.2 */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
/* calculate intermediate products */
oldxinitx = multiply(lold.x, longparm->x, bitshift);
oldyinity = multiply(lold.y, longparm->y, bitshift);
oldxinity = multiply(lold.x, longparm->y, bitshift);
oldyinitx = multiply(lold.y, longparm->x, bitshift);
/* orbit calculation */
if(oldxinity + oldyinitx >= 0)
{
lnew.x = oldxinitx - longparm->x - oldyinity;
lnew.y = oldyinitx - longparm->y + oldxinity;
}
else
{
lnew.x = oldxinitx + longparm->x - oldyinity;
lnew.y = oldyinitx + longparm->y + oldxinity;
}
return(longbailout());
#endif
}
Barnsley2FPFractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 331, example 4.2 */
/* calculate intermediate products */
foldxinitx = old.x * floatparm->x;
foldyinity = old.y * floatparm->y;
foldxinity = old.x * floatparm->y;
foldyinitx = old.y * floatparm->x;
/* orbit calculation */
if(foldxinity + foldyinitx >= 0)
{
new.x = foldxinitx - floatparm->x - foldyinity;
new.y = foldyinitx - floatparm->y + foldxinity;
}
else
{
new.x = foldxinitx + floatparm->x - foldyinity;
new.y = foldyinitx + floatparm->y + foldxinity;
}
return(floatbailout());
}
JuliaFractal()
{
#ifndef XFRACT
/* used for C prototype of fast integer math routines for classic
Mandelbrot and Julia */
lnew.x = ltempsqrx - ltempsqry + longparm->x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + longparm->y;
return(longbailout());
#else
fprintf(stderr,"JuliaFractal called\n");
exit(-1);
#endif
}
JuliafpFractal()
{
/* floating point version of classical Mandelbrot/Julia */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
new.x = tempsqrx - tempsqry + floatparm->x;
new.y = 2.0 * old.x * old.y + floatparm->y;
return(floatbailout());
}
static double f(double x, double y)
{
return(x - x*y);
}
static double g(double x, double y)
{
return(-y + x*y);
}
LambdaFPFractal()
{
/* variation of classical Mandelbrot/Julia */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
tempsqrx = old.x - tempsqrx + tempsqry;
tempsqry = -(old.y * old.x);
tempsqry += tempsqry + old.y;
new.x = floatparm->x * tempsqrx - floatparm->y * tempsqry;
new.y = floatparm->x * tempsqry + floatparm->y * tempsqrx;
return(floatbailout());
}
LambdaFractal()
{
#ifndef XFRACT
/* variation of classical Mandelbrot/Julia */
/* in complex math) temp = Z * (1-Z) */
ltempsqrx = lold.x - ltempsqrx + ltempsqry;
ltempsqry = lold.y
- multiply(lold.y, lold.x, bitshiftless1);
/* (in complex math) Z = Lambda * Z */
lnew.x = multiply(longparm->x, ltempsqrx, bitshift)
- multiply(longparm->y, ltempsqry, bitshift);
lnew.y = multiply(longparm->x, ltempsqry, bitshift)
+ multiply(longparm->y, ltempsqrx, bitshift);
return(longbailout());
#endif
}
SierpinskiFractal()
{
#ifndef XFRACT
/* following code translated from basic - see "Fractals
Everywhere" by Michael Barnsley, p. 251, Program 7.1.1 */
lnew.x = (lold.x << 1); /* new.x = 2 * old.x */
lnew.y = (lold.y << 1); /* new.y = 2 * old.y */
if(lold.y > ltmp.y) /* if old.y > .5 */
lnew.y = lnew.y - ltmp.x; /* new.y = 2 * old.y - 1 */
else if(lold.x > ltmp.y) /* if old.x > .5 */
lnew.x = lnew.x - ltmp.x; /* new.x = 2 * old.x - 1 */
/* end barnsley code */
return(longbailout());
#endif
}
SierpinskiFPFractal()
{
/* following code translated from basic - see "Fractals
Everywhere" by Michael Barnsley, p. 251, Program 7.1.1 */
new.x = old.x + old.x;
new.y = old.y + old.y;
if(old.y > .5)
new.y = new.y - 1;
else if (old.x > .5)
new.x = new.x - 1;
/* end barnsley code */
return(floatbailout());
}
LambdaexponentFractal()
{
/* found this in "Science of Fractal Images" */
FLOATEXPBAILOUT();
FPUsincos (&old.y,&siny,&cosy);
if (old.x >= rqlim && cosy >= 0.0) return(1);
tmpexp = exp(old.x);
tmp.x = tmpexp*cosy;
tmp.y = tmpexp*siny;
/*multiply by lamda */
new.x = floatparm->x*tmp.x - floatparm->y*tmp.y;
new.y = floatparm->y*tmp.x + floatparm->x*tmp.y;
old = new;
return(0);
}
LongLambdaexponentFractal()
{
#ifndef XFRACT
/* found this in "Science of Fractal Images" */
LONGEXPBAILOUT();
SinCos086 (lold.y, &lsiny, &lcosy);
if (lold.x >= llimit && lcosy >= 0L) return(1);
longtmp = Exp086(lold.x);
ltmp.x = multiply(longtmp, lcosy, bitshift);
ltmp.y = multiply(longtmp, lsiny, bitshift);
lnew.x = multiply(longparm->x, ltmp.x, bitshift)
- multiply(longparm->y, ltmp.y, bitshift);
lnew.y = multiply(longparm->x, ltmp.y, bitshift)
+ multiply(longparm->y, ltmp.x, bitshift);
lold = lnew;
return(0);
#endif
}
FloatTrigPlusExponentFractal()
{
/* another Scientific American biomorph type */
/* z(n+1) = e**z(n) + trig(z(n)) + C */
if (fabs(old.x) >= 6.4e2) return(1); /* DOMAIN errors */
tmpexp = exp(old.x);
FPUsincos (&old.y,&siny,&cosy);
CMPLXtrig0(old,new);
/*new = trig(old) + e**old + C */
new.x += tmpexp*cosy + floatparm->x;
new.y += tmpexp*siny + floatparm->y;
return(floatbailout());
}
LongTrigPlusExponentFractal()
{
#ifndef XFRACT
/* calculate exp(z) */
/* domain check for fast transcendental functions */
TRIG16CHECK(lold.x);
TRIG16CHECK(lold.y);
longtmp = Exp086(lold.x);
SinCos086 (lold.y, &lsiny, &lcosy);
LCMPLXtrig0(lold,lnew);
lnew.x += multiply(longtmp, lcosy, bitshift) + longparm->x;
lnew.y += multiply(longtmp, lsiny, bitshift) + longparm->y;
return(longbailout());
#endif
}
MarksLambdaFractal()
{
/* Mark Peterson's variation of "lambda" function */
/* Z1 = (C^(exp-1) * Z**2) + C */
ltmp.x = ltempsqrx - ltempsqry;
ltmp.y = multiply(lold.x ,lold.y ,bitshiftless1);
lnew.x = multiply(lcoefficient.x, ltmp.x, bitshift)
- multiply(lcoefficient.y, ltmp.y, bitshift) + longparm->x;
lnew.y = multiply(lcoefficient.x, ltmp.y, bitshift)
+ multiply(lcoefficient.y, ltmp.x, bitshift) + longparm->y;
return(longbailout());
}
long XXOne, FgOne, FgTwo;
UnityFractal()
{
#ifndef XFRACT
/* brought to you by Mark Peterson - you won't find this in any fractal
books unless they saw it here first - Mark invented it! */
XXOne = multiply(lold.x, lold.x, bitshift) + multiply(lold.y, lold.y, bitshift);
if((XXOne > FgTwo) || (labs(XXOne - FgOne) < delmin))
return(1);
lold.y = multiply(FgTwo - XXOne, lold.x, bitshift);
lold.x = multiply(FgTwo - XXOne, lold.y, bitshift);
lnew=lold; /* TW added this line */
return(0);
#endif
}
#define XXOne new.x
UnityfpFractal()
{
/* brought to you by Mark Peterson - you won't find this in any fractal
books unless they saw it here first - Mark invented it! */
XXOne = sqr(old.x) + sqr(old.y);
if((XXOne > 2.0) || (fabs(XXOne - 1.0) < ddelmin))
return(1);
old.y = (2.0 - XXOne)* old.x;
old.x = (2.0 - XXOne)* old.y;
new=old; /* TW added this line */
return(0);
}
#undef XXOne
Mandel4Fractal()
{
/* By writing this code, Bert has left behind the excuse "don't
know what a fractal is, just know how to make'em go fast".
Bert is hereby declared a bonafide fractal expert! Supposedly
this routine calculates the Mandelbrot/Julia set based on the
polynomial z**4 + lambda, but I wouldn't know -- can't follow
all that integer math speedup stuff - Tim */
/* first, compute (x + iy)**2 */
lnew.x = ltempsqrx - ltempsqry;
lnew.y = multiply(lold.x, lold.y, bitshiftless1);
if (longbailout()) return(1);
/* then, compute ((x + iy)**2)**2 + lambda */
lnew.x = ltempsqrx - ltempsqry + longparm->x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + longparm->y;
return(longbailout());
}
floatZtozPluszpwrFractal()
{
cpower(&old,(int)param[2],&new);
old = ComplexPower(old,old);
new.x = new.x + old.x +floatparm->x;
new.y = new.y + old.y +floatparm->y;
return(floatbailout());
}
longZpowerFractal()
{
#ifndef XFRACT
if(lcpower(&lold,c_exp,&lnew,bitshift))
lnew.x = lnew.y = 8L<<bitshift;
lnew.x += longparm->x;
lnew.y += longparm->y;
return(longbailout());
#endif
}
longCmplxZpowerFractal()
{
#ifndef XFRACT
struct complex x, y;
x.x = (double)lold.x / fudge;
x.y = (double)lold.y / fudge;
y.x = (double)lparm2.x / fudge;
y.y = (double)lparm2.y / fudge;
x = ComplexPower(x, y);
if(fabs(x.x) < fgLimit && fabs(x.y) < fgLimit) {
lnew.x = (long)(x.x * fudge);
lnew.y = (long)(x.y * fudge);
}
else
overflow = 1;
lnew.x += longparm->x;
lnew.y += longparm->y;
return(longbailout());
#endif
}
floatZpowerFractal()
{
cpower(&old,c_exp,&new);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
floatCmplxZpowerFractal()
{
new = ComplexPower(old, parm2);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
Barnsley3Fractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 292, example 4.1 */
/* calculate intermediate products */
oldxinitx = multiply(lold.x, lold.x, bitshift);
oldyinity = multiply(lold.y, lold.y, bitshift);
oldxinity = multiply(lold.x, lold.y, bitshift);
/* orbit calculation */
if(lold.x > 0)
{
lnew.x = oldxinitx - oldyinity - fudge;
lnew.y = oldxinity << 1;
}
else
{
lnew.x = oldxinitx - oldyinity - fudge
+ multiply(longparm->x,lold.x,bitshift);
lnew.y = oldxinity <<1;
/* This term added by Tim Wegner to make dependent on the
imaginary part of the parameter. (Otherwise Mandelbrot
is uninteresting. */
lnew.y += multiply(longparm->y,lold.x,bitshift);
}
return(longbailout());
}
Barnsley3FPFractal()
{
/* An unnamed Mandelbrot/Julia function from "Fractals
Everywhere" by Michael Barnsley, p. 292, example 4.1 */
/* calculate intermediate products */
foldxinitx = old.x * old.x;
foldyinity = old.y * old.y;
foldxinity = old.x * old.y;
/* orbit calculation */
if(old.x > 0)
{
new.x = foldxinitx - foldyinity - 1.0;
new.y = foldxinity * 2;
}
else
{
new.x = foldxinitx - foldyinity -1.0 + floatparm->x * old.x;
new.y = foldxinity * 2;
/* This term added by Tim Wegner to make dependent on the
imaginary part of the parameter. (Otherwise Mandelbrot
is uninteresting. */
new.y += floatparm->y * old.x;
}
return(floatbailout());
}
TrigPlusZsquaredFractal()
{
#ifndef XFRACT
/* From Scientific American, July 1989 */
/* A Biomorph */
/* z(n+1) = trig(z(n))+z(n)**2+C */
LCMPLXtrig0(lold,lnew);
lnew.x += ltempsqrx - ltempsqry + longparm->x;
lnew.y += multiply(lold.x, lold.y, bitshiftless1) + longparm->y;
return(longbailout());
#endif
}
TrigPlusZsquaredfpFractal()
{
/* From Scientific American, July 1989 */
/* A Biomorph */
/* z(n+1) = trig(z(n))+z(n)**2+C */
CMPLXtrig0(old,new);
new.x += tempsqrx - tempsqry + floatparm->x;
new.y += 2.0 * old.x * old.y + floatparm->y;
return(floatbailout());
}
Richard8fpFractal()
{
/* Richard8 {c = z = pixel: z=sin(z)+sin(pixel),|z|<=50} */
CMPLXtrig0(old,new);
/* CMPLXtrig1(*floatparm,tmp); */
new.x += tmp.x;
new.y += tmp.y;
return(floatbailout());
}
Richard8Fractal()
{
#ifndef XFRACT
/* Richard8 {c = z = pixel: z=sin(z)+sin(pixel),|z|<=50} */
LCMPLXtrig0(lold,lnew);
/* LCMPLXtrig1(*longparm,ltmp); */
lnew.x += ltmp.x;
lnew.y += ltmp.y;
return(longbailout());
#endif
}
PopcornFractal()
{
extern int row;
tmp = old;
tmp.x *= 3.0;
tmp.y *= 3.0;
FPUsincos(&tmp.x,&sinx,&cosx);
FPUsincos(&tmp.y,&siny,&cosy);
tmp.x = sinx/cosx + old.x;
tmp.y = siny/cosy + old.y;
FPUsincos(&tmp.x,&sinx,&cosx);
FPUsincos(&tmp.y,&siny,&cosy);
new.x = old.x - parm.x*siny;
new.y = old.y - parm.x*sinx;
/*
new.x = old.x - parm.x*sin(old.y+tan(3*old.y));
new.y = old.y - parm.x*sin(old.x+tan(3*old.x));
*/
if(plot == noplot)
{
plot_orbit(new.x,new.y,1+row%colors);
old = new;
}
else
/* FLOATBAILOUT(); */
/* PB The above line was weird, not what it seems to be! But, bracketing
it or always doing it (either of which seem more likely to be what
was intended) changes the image for the worse, so I'm not touching it.
Same applies to int form in next routine. */
/* PB later: recoded inline, still leaving it weird */
tempsqrx = sqr(new.x);
tempsqry = sqr(new.y);
if((magnitude = tempsqrx + tempsqry) >= rqlim) return(1);
old = new;
return(0);
}
LPopcornFractal()
{
#ifndef XFRACT
extern int row;
ltmp = lold;
ltmp.x *= 3L;
ltmp.y *= 3L;
LTRIGARG(ltmp.x);
LTRIGARG(ltmp.y);
SinCos086(ltmp.x,&lsinx,&lcosx);
SinCos086(ltmp.y,&lsiny,&lcosy);
ltmp.x = divide(lsinx,lcosx,bitshift) + lold.x;
ltmp.y = divide(lsiny,lcosy,bitshift) + lold.y;
LTRIGARG(ltmp.x);
LTRIGARG(ltmp.y);
SinCos086(ltmp.x,&lsinx,&lcosx);
SinCos086(ltmp.y,&lsiny,&lcosy);
lnew.x = lold.x - multiply(lparm.x,lsiny,bitshift);
lnew.y = lold.y - multiply(lparm.x,lsinx,bitshift);
if(plot == noplot)
{
iplot_orbit(lnew.x,lnew.y,1+row%colors);
lold = lnew;
}
else
LONGBAILOUT();
/* PB above still the old way, is weird, see notes in FP popcorn case */
return(0);
#endif
}
int MarksCplxMand(void)
{
tmp.x = tempsqrx - tempsqry;
tmp.y = 2*old.x*old.y;
FPUcplxmul(&tmp, &Coefficient, &new);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
int SpiderfpFractal(void)
{
/* Spider(XAXIS) { c=z=pixel: z=z*z+c; c=c/2+z, |z|<=4 } */
new.x = tempsqrx - tempsqry + tmp.x;
new.y = 2 * old.x * old.y + tmp.y;
tmp.x = tmp.x/2 + new.x;
tmp.y = tmp.y/2 + new.y;
return(floatbailout());
}
SpiderFractal(void)
{
#ifndef XFRACT
/* Spider(XAXIS) { c=z=pixel: z=z*z+c; c=c/2+z, |z|<=4 } */
lnew.x = ltempsqrx - ltempsqry + ltmp.x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + ltmp.y;
ltmp.x = (ltmp.x >> 1) + lnew.x;
ltmp.y = (ltmp.y >> 1) + lnew.y;
return(longbailout());
#endif
}
TetratefpFractal()
{
/* Tetrate(XAXIS) { c=z=pixel: z=c^z, |z|<=(P1+3) } */
new = ComplexPower(*floatparm,old);
return(floatbailout());
}
ZXTrigPlusZFractal()
{
#ifndef XFRACT
/* z = (p1*z*trig(z))+p2*z */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(old) */
LCMPLXmult(lparm,ltmp,ltmp); /* ltmp = p1*trig(old) */
LCMPLXmult(lold,ltmp,ltmp2); /* ltmp2 = p1*old*trig(old) */
LCMPLXmult(lparm2,lold,ltmp); /* ltmp = p2*old */
LCMPLXadd(ltmp2,ltmp,lnew); /* lnew = p1*trig(old) + p2*old */
return(longbailout());
#endif
}
ScottZXTrigPlusZFractal()
{
#ifndef XFRACT
/* z = (z*trig(z))+z */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(old) */
LCMPLXmult(lold,ltmp,lnew); /* lnew = old*trig(old) */
LCMPLXadd(lnew,lold,lnew); /* lnew = trig(old) + old */
return(longbailout());
#endif
}
SkinnerZXTrigSubZFractal()
{
#ifndef XFRACT
/* z = (z*trig(z))-z */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(old) */
LCMPLXmult(lold,ltmp,lnew); /* lnew = old*trig(old) */
LCMPLXsub(lnew,lold,lnew); /* lnew = trig(old) - old */
return(longbailout());
#endif
}
ZXTrigPlusZfpFractal()
{
/* z = (p1*z*trig(z))+p2*z */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(parm,tmp,tmp); /* tmp = p1*trig(old) */
CMPLXmult(old,tmp,tmp2); /* tmp2 = p1*old*trig(old) */
CMPLXmult(parm2,old,tmp); /* tmp = p2*old */
CMPLXadd(tmp2,tmp,new); /* new = p1*trig(old) + p2*old */
return(floatbailout());
}
ScottZXTrigPlusZfpFractal()
{
/* z = (z*trig(z))+z */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(old,tmp,new); /* new = old*trig(old) */
CMPLXadd(new,old,new); /* new = trig(old) + old */
return(floatbailout());
}
SkinnerZXTrigSubZfpFractal()
{
/* z = (z*trig(z))-z */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(old,tmp,new); /* new = old*trig(old) */
CMPLXsub(new,old,new); /* new = trig(old) - old */
return(floatbailout());
}
Sqr1overTrigFractal()
{
#ifndef XFRACT
/* z = sqr(1/trig(z)) */
LCMPLXtrig0(lold,lold);
LCMPLXrecip(lold,lold);
LCMPLXsqr(lold,lnew);
return(longbailout());
#endif
}
Sqr1overTrigfpFractal()
{
/* z = sqr(1/trig(z)) */
CMPLXtrig0(old,old);
CMPLXrecip(old,old);
CMPLXsqr(old,new);
return(floatbailout());
}
TrigPlusTrigFractal()
{
#ifndef XFRACT
/* z = trig(0,z)*p1+trig1(z)*p2 */
LCMPLXtrig0(lold,ltmp);
LCMPLXmult(lparm,ltmp,ltmp);
LCMPLXtrig1(lold,ltmp2);
LCMPLXmult(lparm2,ltmp2,lold);
LCMPLXadd(ltmp,lold,lnew);
return(longbailout());
#endif
}
TrigPlusTrigfpFractal()
{
/* z = trig0(z)*p1+trig1(z)*p2 */
CMPLXtrig0(old,tmp);
CMPLXmult(parm,tmp,tmp);
CMPLXtrig1(old,old);
CMPLXmult(parm2,old,old);
CMPLXadd(tmp,old,new);
return(floatbailout());
}
/* The following four fractals are based on the idea of parallel
or alternate calculations. The shift is made when the mod
reaches a given value. JCO 5/6/92 */
LambdaTrigOrTrigFractal()
{
#ifndef XFRACT
/* z = trig0(z)*p1 if mod(old) < p2.x and
trig1(z)*p1 if mod(old) >= p2.x */
if ((LCMPLXmod(lold)) < lparm2.x){
LCMPLXtrig0(lold,ltmp);
LCMPLXmult(lparm,ltmp,lnew);}
else{
LCMPLXtrig1(lold,ltmp);
LCMPLXmult(lparm,ltmp,lnew);}
return(longbailout());
#endif
}
LambdaTrigOrTrigfpFractal()
{
/* z = trig0(z)*p1 if mod(old) < p2.x and
trig1(z)*p1 if mod(old) >= p2.x */
if (CMPLXmod(old) < parm2.x){
CMPLXtrig0(old,old);
CMPLXmult(parm,old,new);}
else{
CMPLXtrig1(old,old);
CMPLXmult(parm,old,new);}
return(floatbailout());
}
JuliaTrigOrTrigFractal()
{
#ifndef XFRACT
/* z = trig0(z)+p1 if mod(old) < p2.x and
trig1(z)+p1 if mod(old) >= p2.x */
if (LCMPLXmod(lold) < lparm2.x){
LCMPLXtrig0(lold,ltmp);
LCMPLXadd(lparm,ltmp,lnew);}
else{
LCMPLXtrig1(lold,ltmp);
LCMPLXadd(lparm,ltmp,lnew);}
return(longbailout());
#endif
}
JuliaTrigOrTrigfpFractal()
{
/* z = trig0(z)+p1 if mod(old) < p2.x and
trig1(z)+p1 if mod(old) >= p2.x */
if (CMPLXmod(old) < parm2.x){
CMPLXtrig0(old,old);
CMPLXadd(parm,old,new);}
else{
CMPLXtrig1(old,old);
CMPLXadd(parm,old,new);}
return(floatbailout());
}
ManlamTrigOrTrigFractal()
{ /* Psuedo Mandelbrot set corresponding to LambdaTrigOrTrigFractal */
#ifndef XFRACT
/* z = trig0(z)*pixel if mod(old) < p2.x and
trig1(z)*pixel if mod(old) >= p2.x */
if (LCMPLXmod(lold) < lparm2.x){
LCMPLXtrig0(lold,ltmp);
LCMPLXmult(linit,ltmp,lnew);}
else{
LCMPLXtrig1(lold,ltmp);
LCMPLXmult(linit,ltmp,lnew);}
return(longbailout());
#endif
}
ManlamTrigOrTrigfpFractal()
{ /* Psuedo Mandelbrot set corresponding to LambdaTrigOrTrigfpFractal */
/* z = trig0(z)*pixel if mod(old) < p2.x and
trig1(z)*pixel if mod(old) >= p2.x */
if (CMPLXmod(old) < parm2.x){
CMPLXtrig0(old,tmp);
CMPLXmult(init,tmp,new);}
else{
CMPLXtrig1(old,tmp);
CMPLXmult(init,tmp,new);}
return(floatbailout());
}
MandelTrigOrTrigFractal()
{
#ifndef XFRACT
/* z = trig0(z)+pixel if mod(old) < p2.x and
trig1(z)+pixel if mod(old) >= p2.x */
if (LCMPLXmod(lold) < lparm2.x){
LCMPLXtrig0(lold,ltmp);
LCMPLXadd(linit,ltmp,lnew);}
else{
LCMPLXtrig1(lold,ltmp);
LCMPLXadd(linit,ltmp,lnew);}
return(longbailout());
#endif
}
MandelTrigOrTrigfpFractal()
{
/* z = trig0(z)+pixel if mod(old) < p2.x and
trig1(z)+pixel if mod(old) >= p2.x */
if (CMPLXmod(old) < parm2.x){
CMPLXtrig0(old,tmp);
CMPLXadd(init,tmp,new);}
else{
CMPLXtrig1(old,tmp);
CMPLXadd(init,tmp,new);}
return(floatbailout());
}
static int AplusOne, Ap1deg;
static struct MP mpAplusOne, mpAp1deg, mpdegree, mptmpparmy;
int MPCHalleyFractal()
{
#ifndef XFRACT
/* X(X^a - 1) = 0, Halley Map */
/* a = parm.x, relaxation coeff. = parm.y, epsilon = parm2.x */
int ihal;
struct MPC mpcXtoAlessOne, mpcXtoA;
struct MPC mpcXtoAplusOne; /* a-1, a, a+1 */
struct MPC mpcFX, mpcF1prime, mpcF2prime, mpcHalnumer1;
struct MPC mpcHalnumer2, mpcHaldenom, mpctmp;
mpcXtoAlessOne = mpcold;
for(ihal=2; ihal<degree; ihal++) {
mpcXtoAlessOne.x = *pMPsub(*pMPmul(mpcXtoAlessOne.x,mpcold.x),*pMPmul(mpcXtoAlessOne.y,mpcold.y));
mpcXtoAlessOne.y = *pMPadd(*pMPmul(mpcXtoAlessOne.x,mpcold.y),*pMPmul(mpcXtoAlessOne.y,mpcold.x));
}
mpcXtoA.x = *pMPsub(*pMPmul(mpcXtoAlessOne.x,mpcold.x),*pMPmul(mpcXtoAlessOne.y,mpcold.y));
mpcXtoA.y = *pMPadd(*pMPmul(mpcXtoAlessOne.x,mpcold.y),*pMPmul(mpcXtoAlessOne.y,mpcold.x));
mpcXtoAplusOne.x = *pMPsub(*pMPmul(mpcXtoA.x,mpcold.x),*pMPmul(mpcXtoA.y,mpcold.y));
mpcXtoAplusOne.y = *pMPadd(*pMPmul(mpcXtoA.x,mpcold.y),*pMPmul(mpcXtoA.y,mpcold.x));
mpcFX.x = *pMPsub(mpcXtoAplusOne.x, mpcold.x);
mpcFX.y = *pMPsub(mpcXtoAplusOne.y, mpcold.y); /* FX = X^(a+1) - X = F */
mpcF2prime.x = *pMPmul(mpAp1deg, mpcXtoAlessOne.x); /* mpAp1deg in setup */
mpcF2prime.y = *pMPmul(mpAp1deg, mpcXtoAlessOne.y); /* F" */
mpcF1prime.x = *pMPsub(*pMPmul(mpAplusOne, mpcXtoA.x), mpone);
mpcF1prime.y = *pMPmul(mpAplusOne, mpcXtoA.y); /* F' */
mpcHalnumer1.x = *pMPsub(*pMPmul(mpcF2prime.x,mpcFX.x),*pMPmul(mpcF2prime.y,mpcFX.y));
mpcHalnumer1.y = *pMPadd(*pMPmul(mpcF2prime.x,mpcFX.y),*pMPmul(mpcF2prime.y,mpcFX.x));
/* F * F" */
mpcHaldenom.x = *pMPadd(mpcF1prime.x, mpcF1prime.x);
mpcHaldenom.y = *pMPadd(mpcF1prime.y, mpcF1prime.y); /* 2 * F' */
mpcHalnumer1 = MPCdiv(mpcHalnumer1, mpcHaldenom); /* F"F/2F' */
mpcHalnumer2.x = *pMPsub(mpcF1prime.x, mpcHalnumer1.x);
mpcHalnumer2.y = *pMPsub(mpcF1prime.y, mpcHalnumer1.y); /* F' - F"F/2F' */
mpcHalnumer2 = MPCdiv(mpcFX, mpcHalnumer2);
mpctmp.x = *pMPmul(mptmpparmy,mpcHalnumer2.x); /* mptmpparmy is */
mpctmp.y = *pMPmul(mptmpparmy,mpcHalnumer2.y); /* relaxation coef. */
mpcnew.x = *pMPsub(mpcold.x, mpctmp.x);
mpcnew.y = *pMPsub(mpcold.y, mpctmp.y);
return(MPCHalleybailout());
#endif
}
HalleyFractal()
{
/* X(X^a - 1) = 0, Halley Map */
/* a = parm.x = degree, relaxation coeff. = parm.y, epsilon = parm2.x */
int ihal;
CMPLX XtoAlessOne, XtoA, XtoAplusOne; /* a-1, a, a+1 */
CMPLX FX, F1prime, F2prime, Halnumer1, Halnumer2, Haldenom;
XtoAlessOne = old;
for(ihal=2; ihal<degree; ihal++) {
CMPLXmult(old, XtoAlessOne, XtoAlessOne);
}
CMPLXmult(old, XtoAlessOne, XtoA);
CMPLXmult(old, XtoA, XtoAplusOne);
CMPLXsub(XtoAplusOne, old, FX); /* FX = X^(a+1) - X = F */
F2prime.x = Ap1deg * XtoAlessOne.x; /* Ap1deg in setup */
F2prime.y = Ap1deg * XtoAlessOne.y; /* F" */
F1prime.x = AplusOne * XtoA.x - 1.0;
F1prime.y = AplusOne * XtoA.y; /* F' */
CMPLXmult(F2prime, FX, Halnumer1); /* F * F" */
Haldenom.x = F1prime.x + F1prime.x;
Haldenom.y = F1prime.y + F1prime.y; /* 2 * F' */
complex_div(Halnumer1, Haldenom, &Halnumer1); /* F"F/2F' */
CMPLXsub(F1prime, Halnumer1, Halnumer2); /* F' - F"F/2F' */
complex_div(FX, Halnumer2, &Halnumer2);
new.x = old.x - (parm.y * Halnumer2.x); /* parm.y is relaxation coef. */
new.y = old.y - (parm.y * Halnumer2.y);
return(Halleybailout());
}
ScottTrigPlusTrigFractal()
{
#ifndef XFRACT
/* z = trig0(z)+trig1(z) */
LCMPLXtrig0(lold,ltmp);
LCMPLXtrig1(lold,lold);
LCMPLXadd(ltmp,lold,lnew);
return(longbailout());
#endif
}
ScottTrigPlusTrigfpFractal()
{
/* z = trig0(z)+trig1(z) */
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXadd(tmp,tmp2,new);
return(floatbailout());
}
SkinnerTrigSubTrigFractal()
{
#ifndef XFRACT
/* z = trig(0,z)-trig1(z) */
LCMPLXtrig0(lold,ltmp);
LCMPLXtrig1(lold,ltmp2);
LCMPLXsub(ltmp,ltmp2,lnew);
return(longbailout());
#endif
}
SkinnerTrigSubTrigfpFractal()
{
/* z = trig0(z)-trig1(z) */
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXsub(tmp,tmp2,new);
return(floatbailout());
}
TrigXTrigfpFractal()
{
/* z = trig0(z)*trig1(z) */
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,old);
CMPLXmult(tmp,old,new);
return(floatbailout());
}
TrigXTrigFractal()
{
#ifndef XFRACT
LCMPLX ltmp2;
/* z = trig0(z)*trig1(z) */
LCMPLXtrig0(lold,ltmp);
LCMPLXtrig1(lold,ltmp2);
LCMPLXmult(ltmp,ltmp2,lnew);
if(overflow)
TryFloatFractal(TrigXTrigfpFractal);
return(longbailout());
#endif
}
/* call float version of fractal if integer math overflow */
TryFloatFractal(int (*fpFractal)())
{
overflow=0;
/* lold had better not be changed! */
old.x = lold.x; old.x /= fudge;
old.y = lold.y; old.y /= fudge;
tempsqrx = sqr(old.x);
tempsqry = sqr(old.y);
fpFractal();
lnew.x = new.x/fudge;
lnew.y = new.y/fudge;
return(0);
}
/********************************************************************/
/* Next six orbit functions are one type - extra functions are */
/* special cases written for speed. */
/********************************************************************/
TrigPlusSqrFractal() /* generalization of Scott and Skinner types */
{
#ifndef XFRACT
/* { z=pixel: z=(p1,p2)*trig(z)+(p3,p4)*sqr(z), |z|<BAILOUT } */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(lparm,ltmp,lnew); /* lnew = lparm*trig(lold) */
LCMPLXsqr_old(ltmp); /* ltmp = sqr(lold) */
LCMPLXmult(lparm2,ltmp,ltmp);/* ltmp = lparm2*sqr(lold) */
LCMPLXadd(lnew,ltmp,lnew); /* lnew = lparm*trig(lold)+lparm2*sqr(lold) */
return(longbailout());
#endif
}
TrigPlusSqrfpFractal() /* generalization of Scott and Skinner types */
{
/* { z=pixel: z=(p1,p2)*trig(z)+(p3,p4)*sqr(z), |z|<BAILOUT } */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(parm,tmp,new); /* new = parm*trig(old) */
CMPLXsqr_old(tmp); /* tmp = sqr(old) */
CMPLXmult(parm2,tmp,tmp2); /* tmp = parm2*sqr(old) */
CMPLXadd(new,tmp2,new); /* new = parm*trig(old)+parm2*sqr(old) */
return(floatbailout());
}
ScottTrigPlusSqrFractal()
{
#ifndef XFRACT
/* { z=pixel: z=trig(z)+sqr(z), |z|<BAILOUT } */
LCMPLXtrig0(lold,lnew); /* lnew = trig(lold) */
LCMPLXsqr_old(ltmp); /* lold = sqr(lold) */
LCMPLXadd(ltmp,lnew,lnew); /* lnew = trig(lold)+sqr(lold) */
return(longbailout());
#endif
}
ScottTrigPlusSqrfpFractal() /* float version */
{
/* { z=pixel: z=sin(z)+sqr(z), |z|<BAILOUT } */
CMPLXtrig0(old,new); /* new = trig(old) */
CMPLXsqr_old(tmp); /* tmp = sqr(old) */
CMPLXadd(new,tmp,new); /* new = trig(old)+sqr(old) */
return(floatbailout());
}
SkinnerTrigSubSqrFractal()
{
#ifndef XFRACT
/* { z=pixel: z=sin(z)-sqr(z), |z|<BAILOUT } */
LCMPLXtrig0(lold,lnew); /* lnew = trig(lold) */
LCMPLXsqr_old(ltmp); /* lold = sqr(lold) */
LCMPLXsub(lnew,ltmp,lnew); /* lnew = trig(lold)-sqr(lold) */
return(longbailout());
#endif
}
SkinnerTrigSubSqrfpFractal()
{
/* { z=pixel: z=sin(z)-sqr(z), |z|<BAILOUT } */
CMPLXtrig0(old,new); /* new = trig(old) */
CMPLXsqr_old(tmp); /* old = sqr(old) */
CMPLXsub(new,tmp,new); /* new = trig(old)-sqr(old) */
return(floatbailout());
}
TrigZsqrdfpFractal()
{
/* { z=pixel: z=trig(z*z), |z|<TEST } */
CMPLXsqr_old(tmp);
CMPLXtrig0(tmp,new);
return(floatbailout());
}
TrigZsqrdFractal() /* this doesn't work very well */
{
#ifndef XFRACT
/* { z=pixel: z=trig(z*z), |z|<TEST } */
LCMPLXsqr_old(ltmp);
LCMPLXtrig0(ltmp,lnew);
if(overflow)
TryFloatFractal(TrigZsqrdfpFractal);
return(longbailout());
#endif
}
SqrTrigFractal()
{
#ifndef XFRACT
/* { z=pixel: z=sqr(trig(z)), |z|<TEST} */
LCMPLXtrig0(lold,ltmp);
LCMPLXsqr(ltmp,lnew);
return(longbailout());
#endif
}
SqrTrigfpFractal()
{
/* SZSB(XYAXIS) { z=pixel, TEST=(p1+3): z=sin(z)*sin(z), |z|<TEST} */
CMPLXtrig0(old,tmp);
CMPLXsqr(tmp,new);
return(floatbailout());
}
Magnet1Fractal() /* Z = ((Z**2 + C - 1)/(2Z + C - 2))**2 */
{ /* In "Beauty of Fractals", code by Kev Allen. */
CMPLX top, bot, tmp;
double div;
top.x = tempsqrx - tempsqry + floatparm->x - 1; /* top = Z**2+C-1 */
top.y = old.x * old.y;
top.y = top.y + top.y + floatparm->y;
bot.x = old.x + old.x + floatparm->x - 2; /* bot = 2*Z+C-2 */
bot.y = old.y + old.y + floatparm->y;
div = bot.x*bot.x + bot.y*bot.y; /* tmp = top/bot */
if (div < FLT_MIN) return(1);
tmp.x = (top.x*bot.x + top.y*bot.y)/div;
tmp.y = (top.y*bot.x - top.x*bot.y)/div;
new.x = (tmp.x + tmp.y) * (tmp.x - tmp.y); /* Z = tmp**2 */
new.y = tmp.x * tmp.y;
new.y += new.y;
return(floatbailout());
}
Magnet2Fractal() /* Z = ((Z**3 + 3(C-1)Z + (C-1)(C-2) ) / */
/* (3Z**2 + 3(C-2)Z + (C-1)(C-2)+1) )**2 */
{ /* In "Beauty of Fractals", code by Kev Allen. */
CMPLX top, bot, tmp;
double div;
top.x = old.x * (tempsqrx-tempsqry-tempsqry-tempsqry + T_Cm1.x)
- old.y * T_Cm1.y + T_Cm1Cm2.x;
top.y = old.y * (tempsqrx+tempsqrx+tempsqrx-tempsqry + T_Cm1.x)
+ old.x * T_Cm1.y + T_Cm1Cm2.y;
bot.x = tempsqrx - tempsqry;
bot.x = bot.x + bot.x + bot.x
+ old.x * T_Cm2.x - old.y * T_Cm2.y
+ T_Cm1Cm2.x + 1.0;
bot.y = old.x * old.y;
bot.y += bot.y;
bot.y = bot.y + bot.y + bot.y
+ old.x * T_Cm2.y + old.y * T_Cm2.x
+ T_Cm1Cm2.y;
div = bot.x*bot.x + bot.y*bot.y; /* tmp = top/bot */
if (div < FLT_MIN) return(1);
tmp.x = (top.x*bot.x + top.y*bot.y)/div;
tmp.y = (top.y*bot.x - top.x*bot.y)/div;
new.x = (tmp.x + tmp.y) * (tmp.x - tmp.y); /* Z = tmp**2 */
new.y = tmp.x * tmp.y;
new.y += new.y;
return(floatbailout());
}
LambdaTrigFractal()
{
#ifndef XFRACT
LONGXYTRIGBAILOUT();
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(*longparm,ltmp,lnew); /* lnew = longparm*trig(lold) */
lold = lnew;
return(0);
#endif
}
LambdaTrigfpFractal()
{
FLOATXYTRIGBAILOUT();
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(*floatparm,tmp,new); /* new = longparm*trig(old) */
old = new;
return(0);
}
/* bailouts are different for different trig functions */
LambdaTrigFractal1()
{
#ifndef XFRACT
LONGTRIGBAILOUT(); /* sin,cos */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(*longparm,ltmp,lnew); /* lnew = longparm*trig(lold) */
lold = lnew;
return(0);
#endif
}
LambdaTrigfpFractal1()
{
FLOATTRIGBAILOUT(); /* sin,cos */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(*floatparm,tmp,new); /* new = longparm*trig(old) */
old = new;
return(0);
}
LambdaTrigFractal2()
{
#ifndef XFRACT
LONGHTRIGBAILOUT(); /* sinh,cosh */
LCMPLXtrig0(lold,ltmp); /* ltmp = trig(lold) */
LCMPLXmult(*longparm,ltmp,lnew); /* lnew = longparm*trig(lold) */
lold = lnew;
return(0);
#endif
}
LambdaTrigfpFractal2()
{
#ifndef XFRACT
FLOATHTRIGBAILOUT(); /* sinh,cosh */
CMPLXtrig0(old,tmp); /* tmp = trig(old) */
CMPLXmult(*floatparm,tmp,new); /* new = longparm*trig(old) */
old = new;
return(0);
#endif
}
ManOWarFractal()
{
#ifndef XFRACT
/* From Art Matrix via Lee Skinner */
lnew.x = ltempsqrx - ltempsqry + ltmp.x + longparm->x;
lnew.y = multiply(lold.x, lold.y, bitshiftless1) + ltmp.y + longparm->y;
ltmp = lold;
return(longbailout());
#endif
}
ManOWarfpFractal()
{
/* From Art Matrix via Lee Skinner */
/* note that fast >= 287 equiv in fracsuba.asm must be kept in step */
new.x = tempsqrx - tempsqry + tmp.x + floatparm->x;
new.y = 2.0 * old.x * old.y + tmp.y + floatparm->y;
tmp = old;
return(floatbailout());
}
/*
MarksMandelPwr (XAXIS) {
z = pixel, c = z ^ (z - 1):
z = c * sqr(z) + pixel,
|z| <= 4
}
*/
MarksMandelPwrfpFractal()
{
CMPLXtrig0(old,new);
CMPLXmult(tmp,new,new);
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
MarksMandelPwrFractal()
{
#ifndef XFRACT
LCMPLXtrig0(lold,lnew);
LCMPLXmult(ltmp,lnew,lnew);
lnew.x += longparm->x;
lnew.y += longparm->y;
return(longbailout());
#endif
}
/* I was coding Marksmandelpower and failed to use some temporary
variables. The result was nice, and since my name is not on any fractal,
I thought I would immortalize myself with this error!
Tim Wegner */
TimsErrorfpFractal()
{
CMPLXtrig0(old,new);
new.x = new.x * tmp.x - new.y * tmp.y;
new.y = new.x * tmp.y - new.y * tmp.x;
new.x += floatparm->x;
new.y += floatparm->y;
return(floatbailout());
}
TimsErrorFractal()
{
#ifndef XFRACT
LCMPLXtrig0(lold,lnew);
lnew.x = multiply(lnew.x,ltmp.x,bitshift)-multiply(lnew.y,ltmp.y,bitshift);
lnew.y = multiply(lnew.x,ltmp.y,bitshift)-multiply(lnew.y,ltmp.x,bitshift);
lnew.x += longparm->x;
lnew.y += longparm->y;
return(longbailout());
#endif
}
CirclefpFractal()
{
extern int colors;
extern int color;
int i;
i = param[0]*(tempsqrx+tempsqry);
color = i&(colors-1);
return(1);
}
/*
CirclelongFractal()
{
extern int colors;
extern int color;
long i;
i = multiply(lparm.x,(ltempsqrx+ltempsqry),bitshift);
i = i >> bitshift;
color = i&(colors-1);
return(1);
}
*/
/* -------------------------------------------------------------------- */
/* Initialization (once per pixel) routines */
/* -------------------------------------------------------------------- */
#ifdef XFRACT
/* this code translated to asm - lives in newton.asm */
/* transform points with reciprocal function */
void invertz2(CMPLX *z)
{
z->x = dx0[col]+dx1[row];
z->y = dy0[row]+dy1[col];
z->x -= f_xcenter; z->y -= f_ycenter; /* Normalize values to center of circle */
tempsqrx = sqr(z->x) + sqr(z->y); /* Get old radius */
if(fabs(tempsqrx) > FLT_MIN)
tempsqrx = f_radius / tempsqrx;
else
tempsqrx = FLT_MAX; /* a big number, but not TOO big */
z->x *= tempsqrx; z->y *= tempsqrx; /* Perform inversion */
z->x += f_xcenter; z->y += f_ycenter; /* Renormalize */
}
#endif
int long_julia_per_pixel()
{
#ifndef XFRACT
/* integer julia types */
/* lambda */
/* barnsleyj1 */
/* barnsleyj2 */
/* sierpinski */
if(invert)
{
/* invert */
invertz2(&old);
/* watch out for overflow */
if(sqr(old.x)+sqr(old.y) >= 127)
{
old.x = 8; /* value to bail out in one iteration */
old.y = 8;
}
/* convert to fudged longs */
lold.x = old.x*fudge;
lold.y = old.y*fudge;
}
else
{
lold.x = lx0[col]+lx1[row];
lold.y = ly0[row]+ly1[col];
}
return(0);
#else
printf("Called long_julia_per_pixel\n");
exit(0);
#endif
}
int long_richard8_per_pixel()
{
#ifndef XFRACT
long_mandel_per_pixel();
LCMPLXtrig1(*longparm,ltmp);
LCMPLXmult(ltmp,lparm2,ltmp);
return(1);
#endif
}
int long_mandel_per_pixel()
{
#ifndef XFRACT
/* integer mandel types */
/* barnsleym1 */
/* barnsleym2 */
linit.x = lx0[col]+lx1[row];
if(invert)
{
/* invert */
invertz2(&init);
/* watch out for overflow */
if(sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}
/* convert to fudged longs */
linit.x = init.x*fudge;
linit.y = init.y*fudge;
}
if(useinitorbit == 1)
lold = linitorbit;
else
lold = linit;
lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;
return(1); /* 1st iteration has been done */
#else
printf("Called long_mandel_per_pixel\n");
exit(0);
#endif
}
int julia_per_pixel()
{
/* julia */
if(invert)
{
/* invert */
invertz2(&old);
/* watch out for overflow */
if(bitshift <= 24)
if (sqr(old.x)+sqr(old.y) >= 127)
{
old.x = 8; /* value to bail out in one iteration */
old.y = 8;
}
if(bitshift > 24)
if (sqr(old.x)+sqr(old.y) >= 4.0)
{
old.x = 2; /* value to bail out in one iteration */
old.y = 2;
}
/* convert to fudged longs */
lold.x = old.x*fudge;
lold.y = old.y*fudge;
}
else
{
lold.x = lx0[col]+lx1[row];
lold.y = ly0[row]+ly1[col];
}
ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
ltmp = lold;
return(0);
}
marks_mandelpwr_per_pixel()
{
#ifndef XFRACT
mandel_per_pixel();
ltmp = lold;
ltmp.x -= fudge;
LCMPLXpwr(lold,ltmp,ltmp);
return(1);
#endif
}
int mandel_per_pixel()
{
/* mandel */
if(invert)
{
invertz2(&init);
/* watch out for overflow */
if(bitshift <= 24)
if (sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}
if(bitshift > 24)
if (sqr(init.x)+sqr(init.y) >= 4)
{
init.x = 2; /* value to bail out in one iteration */
init.y = 2;
}
/* convert to fudged longs */
linit.x = init.x*fudge;
linit.y = init.y*fudge;
}
else
linit.x = lx0[col]+lx1[row];
switch (fractype)
{
case MANDELLAMBDA: /* Critical Value 0.5 + 0.0i */
lold.x = FgHalf;
lold.y = 0;
break;
default:
lold = linit;
break;
}
/* alter init value */
if(useinitorbit == 1)
lold = linitorbit;
else if(useinitorbit == 2)
lold = linit;
if(inside == -60 || inside == -61)
{
/* kludge to match "Beauty of Fractals" picture since we start
Mandelbrot iteration with init rather than 0 */
lold.x = lparm.x; /* initial pertubation of parameters set */
lold.y = lparm.y;
color = -1;
}
else
{
lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;
}
ltmp = linit; /* for spider */
ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
return(1); /* 1st iteration has been done */
}
int marksmandel_per_pixel()
{
/* marksmandel */
if(invert)
{
invertz2(&init);
/* watch out for overflow */
if(sqr(init.x)+sqr(init.y) >= 127)
{
init.x = 8; /* value to bail out in one iteration */
init.y = 8;
}
/* convert to fudged longs */
linit.x = init.x*fudge;
linit.y = init.y*fudge;
}
else
linit.x = lx0[col]+lx1[row];
if(useinitorbit == 1)
lold = linitorbit;
else
lold = linit;
lold.x += lparm.x; /* initial pertubation of parameters set */
lold.y += lparm.y;
if(c_exp > 3)
lcpower(&lold,c_exp-1,&lcoefficient,bitshift);
else if(c_exp == 3) {
lcoefficient.x = multiply(lold.x, lold.x, bitshift)
- multiply(lold.y, lold.y, bitshift);
lcoefficient.y = multiply(lold.x, lold.y, bitshiftless1);
}
else if(c_exp == 2)
lcoefficient = lold;
else if(c_exp < 2) {
lcoefficient.x = 1L << bitshift;
lcoefficient.y = 0L;
}
ltempsqrx = multiply(lold.x, lold.x, bitshift);
ltempsqry = multiply(lold.y, lold.y, bitshift);
return(1); /* 1st iteration has been done */
}
marks_mandelpwrfp_per_pixel()
{
mandelfp_per_pixel();
tmp = old;
tmp.x -= 1;
CMPLXpwr(old,tmp,tmp);
return(1);
}
int mandelfp_per_pixel()
{
/* floating point mandelbrot */
/* mandelfp */
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
switch (fractype)
{
case MAGNET2M:
FloatPreCalcMagnet2();
case MAGNET1M: /* Crit Val Zero both, but neither */
old.x = old.y = 0.0; /* is of the form f(Z,C) = Z*g(Z)+C */
break;
case MANDELLAMBDAFP: /* Critical Value 0.5 + 0.0i */
old.x = 0.5;
old.y = 0.0;
break;
default:
old = init;
break;
}
/* alter init value */
if(useinitorbit == 1)
old = initorbit;
else if(useinitorbit == 2)
old = init;
if(inside == -60 || inside == -61)
{
/* kludge to match "Beauty of Fractals" picture since we start
Mandelbrot iteration with init rather than 0 */
old.x = parm.x; /* initial pertubation of parameters set */
old.y = parm.y;
color = -1;
}
else
{
old.x += parm.x;
old.y += parm.y;
}
tmp = init; /* for spider */
tempsqrx = sqr(old.x); /* precalculated value for regular Mandelbrot */
tempsqry = sqr(old.y);
return(1); /* 1st iteration has been done */
}
int juliafp_per_pixel()
{
/* floating point julia */
/* juliafp */
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
tempsqrx = sqr(old.x); /* precalculated value for regular Julia */
tempsqry = sqr(old.y);
tmp = old;
return(0);
}
int MPCjulia_per_pixel()
{
#ifndef XFRACT
/* floating point julia */
/* juliafp */
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
mpcold.x = *pd2MP(old.x);
mpcold.y = *pd2MP(old.y);
return(0);
#endif
}
otherrichard8fp_per_pixel()
{
othermandelfp_per_pixel();
CMPLXtrig1(*floatparm,tmp);
CMPLXmult(tmp,parm2,tmp);
return(1);
}
int othermandelfp_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
if(useinitorbit == 1)
old = initorbit;
else
old = init;
old.x += parm.x; /* initial pertubation of parameters set */
old.y += parm.y;
return(1); /* 1st iteration has been done */
}
int MPCHalley_per_pixel()
{
#ifndef XFRACT
/* MPC halley */
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
mpcold.x = *pd2MP(init.x);
mpcold.y = *pd2MP(init.y);
return(0);
#endif
}
int Halley_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
old = init;
return(0); /* 1st iteration is not done */
}
int otherjuliafp_per_pixel()
{
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
return(0);
}
#if 0
#define Q0 .113
#define Q1 .01
#else
#define Q0 0
#define Q1 0
#endif
int quaternionjulfp_per_pixel()
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
tmp.x = 0;
tmp.y = 0;
qc = param[0];
qci = param[1];
qcj = param[2];
qck = param[3];
return(0);
}
int quaternionfp_per_pixel()
{
old.x = 0;
tmp.x = 0;
old.y = 0;
tmp.y = 0;
qc = dx0[col]+dx1[row];
qci = dy0[row]+dy1[col];
qcj = param[2];
qck = param[3];
return(0);
}
int trigmandelfp_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
if(useinitorbit == 1)
old = initorbit;
else
old = init;
old.x += parm.x; /* initial pertubation of parameters set */
old.y += parm.y;
CMPLXtrig0(old,old);
return(1); /* 1st iteration has been done */
}
int trigjuliafp_per_pixel()
{
/* for tetrated types */
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
CMPLXtrig0(old,old);
return(0);
}
int trigXtrigmandelfp_per_pixel()
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
if(useinitorbit == 1)
old = initorbit;
else
old = init;
old.x += parm.x; /* initial pertubation of parameters set */
old.y += parm.y;
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXmult(tmp,tmp2,old);
return(1); /* 1st iteration has been done */
}
int trigXtrigjuliafp_per_pixel()
{
if(invert)
invertz2(&old);
else
{
old.x = dx0[col]+dx1[row];
old.y = dy0[row]+dy1[col];
}
CMPLXtrig0(old,tmp);
CMPLXtrig1(old,tmp2);
CMPLXmult(tmp,tmp2,old);
return(0);
}
int MarksCplxMandperp(void)
{
if(invert)
invertz2(&init);
else
init.x = dx0[col]+dx1[row];
old.x = init.x + parm.x; /* initial pertubation of parameters set */
old.y = init.y + parm.y;
tempsqrx = sqr(old.x); /* precalculated value */
tempsqry = sqr(old.y);
Coefficient = ComplexPower(init, pwr);
return(1);
}
QuaternionFPFractal()
{
double a0,a1,a2,a3,n0,n1,n2,n3;
a0 = old.x;
a1 = old.y;
a2 = tmp.x;
a3 = tmp.y;
n0 = a0*a0-a1*a1-a2*a2-a3*a3 + qc;
n1 = 2*a0*a1 + qci;
n2 = 2*a0*a2 + qcj;
n3 = 2*a0*a3 + qck;
/* Check bailout */
magnitude = a0*a0+a1*a1+a2*a2+a3*a3;
if (magnitude>rqlim) {
return 1;
}
old.x = n0;
old.y = n1;
tmp.x = n2;
tmp.y = n3;
return(0);
}
/* -------------------------------------------------------------------- */
/* Setup (once per fractal image) routines */
/* -------------------------------------------------------------------- */
MandelSetup() /* Mandelbrot Routine */
{
if (debugflag != 90 && ! invert && decomp[0] == 0 && rqlim <= 4.0
&& bitshift == 29 && potflag == 0
&& biomorph == -1 && inside > -59 && outside >= -1
&& useinitorbit != 1)
calctype = calcmand; /* the normal case - use CALCMAND */
else
{
/* special case: use the main processing loop */
calctype = StandardFractal;
longparm = &linit;
}
return(1);
}
JuliaSetup() /* Julia Routine */
{
if (debugflag != 90 && ! invert && decomp[0] == 0 && rqlim <= 4.0
&& bitshift == 29 && potflag == 0
&& biomorph == -1 && inside > -59 && outside >= -1
&& !finattract)
calctype = calcmand; /* the normal case - use CALCMAND */
else
{
/* special case: use the main processing loop */
calctype = StandardFractal;
longparm = &lparm;
get_julia_attractor (0.0, 0.0); /* another attractor? */
}
return(1);
}
NewtonSetup() /* Newton/NewtBasin Routines */
{
int i;
extern int basin;
extern int fpu;
if (debugflag != 1010)
{
if(fpu != 0)
{
if(fractype == MPNEWTON)
fractype = NEWTON;
else if(fractype == MPNEWTBASIN)
fractype = NEWTBASIN;
}
else
{
if(fractype == NEWTON)
fractype = MPNEWTON;
else if(fractype == NEWTBASIN)
fractype = MPNEWTBASIN;
}
curfractalspecific = &fractalspecific[fractype];
}
/* set up table of roots of 1 along unit circle */
degree = (int)parm.x;
if(degree < 2)
degree = 3; /* defaults to 3, but 2 is possible */
root = 1;
/* precalculated values */
roverd = (double)root / (double)degree;
d1overd = (double)(degree - 1) / (double)degree;
maxcolor = 0;
threshold = .3*PI/degree; /* less than half distance between roots */
#ifndef XFRACT
if (fractype == MPNEWTON || fractype == MPNEWTBASIN) {
mproverd = *pd2MP(roverd);
mpd1overd = *pd2MP(d1overd);
mpthreshold = *pd2MP(threshold);
mpone = *pd2MP(1.0);
}
#endif
floatmin = FLT_MIN;
floatmax = FLT_MAX;
basin = 0;
if(roots != staticroots) {
free(roots);
roots = staticroots;
}
if (fractype==NEWTBASIN)
{
if(parm.y)
basin = 2; /*stripes */
else
basin = 1;
if(degree > 16)
{
if((roots=(CMPLX *)malloc(degree*sizeof(CMPLX)))==NULL)
{
roots = staticroots;
degree = 16;
}
}
else
roots = staticroots;
/* list of roots to discover where we converged for newtbasin */
for(i=0;i<degree;i++)
{
roots[i].x = cos(i*twopi/(double)degree);
roots[i].y = sin(i*twopi/(double)degree);
}
}
#ifndef XFRACT
else if (fractype==MPNEWTBASIN)
{
if(parm.y)
basin = 2; /*stripes */
else
basin = 1;
if(degree > 16)
{
if((MPCroots=(struct MPC *)malloc(degree*sizeof(struct MPC)))==NULL)
{
MPCroots = (struct MPC *)staticroots;
degree = 16;
}
}
else
MPCroots = (struct MPC *)staticroots;
/* list of roots to discover where we converged for newtbasin */
for(i=0;i<degree;i++)
{
MPCroots[i].x = *pd2MP(cos(i*twopi/(double)degree));
MPCroots[i].y = *pd2MP(sin(i*twopi/(double)degree));
}
}
#endif
param[0] = (double)degree; /* JCO 7/1/92 */
if (degree%4 == 0)
symmetry = XYAXIS;
else
symmetry = XAXIS;
calctype=StandardFractal;
#ifndef XFRACT
if (fractype == MPNEWTON || fractype == MPNEWTBASIN)
setMPfunctions();
#endif
return(1);
}
StandaloneSetup()
{
timer(0,curfractalspecific->calctype);
return(0); /* effectively disable solid-guessing */
}
UnitySetup()
{
periodicitycheck = 0;
FgOne = (1L << bitshift);
FgTwo = FgOne + FgOne;
return(1);
}
MandelfpSetup()
{
c_exp = param[2];
pwr.x = param[2] - 1.0;
pwr.y = param[3];
floatparm = &init;
switch (fractype)
{
case MANDELFP:
/*
floating point code could probably be altered to handle many of
the situations that otherwise are using StandardFractal().
calcmandfp() can currently handle invert, any rqlim, potflag
zmag, epsilon cross, and all the current outside options
Wes Loewer 11/03/91
*/
if (debugflag != 90
&& !distest
&& decomp[0] == 0
&& biomorph == -1
&& (inside >= -1 || inside == -59 || inside == -100)
/* uncomment this next line if more outside options are added */
/* && outside >= -5 */
&& useinitorbit != 1)
{
calctype = calcmandfp; /* the normal case - use calcmandfp */
calcmandfpasmstart();
}
else
{
/* special case: use the main processing loop */
calctype = StandardFractal;
}
break;
case FPMANDELZPOWER:
if(c_exp & 1) /* odd exponents */
symmetry = XYAXIS_NOPARM;
if(param[3] != 0 || (double)c_exp != param[2])
symmetry = NOSYM;
if(param[3] == 0.0 && debugflag != 6000 && (double)c_exp == param[2])
fractalspecific[fractype].orbitcalc = floatZpowerFractal;
else
fractalspecific[fractype].orbitcalc = floatCmplxZpowerFractal;
break;
case MAGNET1M:
case MAGNET2M:
attr[0].x = 1.0; /* 1.0 + 0.0i always attracts */
attr[0].y = 0.0; /* - both MAGNET1 and MAGNET2 */
attrperiod[0] = 1;
attractors = 1;
break;
case SPIDERFP:
if(periodicitycheck==1) /* if not user set */
periodicitycheck=4;
break;
case MANDELEXP:
symmetry = XAXIS_NOPARM;
break;
/* Added to account for symmetry in manfn+exp and manfn+zsqrd */
/* JCO 2/29/92 */
case FPMANTRIGPLUSEXP:
case FPMANTRIGPLUSZSQRD:
if(parm.y == 0.0)
symmetry = XAXIS;
else
symmetry = NOSYM;
if ((trigndx[0] == LOG) || (trigndx[0] == 14)) /* LOG or FLIP */
symmetry = NOSYM;
break;
case QUATFP:
attractors = 0;
periodicitycheck = 0;
break;
default:
break;
}
return(1);
}
JuliafpSetup()
{
c_exp = param[2];
floatparm = &parm;
if(fractype==COMPLEXMARKSJUL)
{
pwr.x = param[2] - 1.0;
pwr.y = param[3];
Coefficient = ComplexPower(*floatparm, pwr);
}
switch (fractype)
{
case JULIAFP:
/*
floating point code could probably be altered to handle many of
the situations that otherwise are using StandardFractal().
calcmandfp() can currently handle invert, any rqlim, potflag
zmag, epsilon cross, and all the current outside options
Wes Loewer 11/03/91
*/
if (debugflag != 90
&& !distest
&& decomp[0] == 0
&& biomorph == -1
&& (inside >= -1 || inside == -59 || inside == -100)
/* uncomment this next line if more outside options are added */
/* && outside >= -5 */
&& useinitorbit != 1
&& !finattract)
{
calctype = calcmandfp; /* the normal case - use calcmandfp */
calcmandfpasmstart();
}
else
{
/* special case: use the main processing loop */
calctype = StandardFractal;
get_julia_attractor (0.0, 0.0); /* another attractor? */
}
break;
case FPJULIAZPOWER:
if((c_exp & 1) || param[3] != 0.0 || (double)c_exp != param[2] )
symmetry = NOSYM;
if(param[3] == 0.0 && debugflag != 6000 && (double)c_exp == param[2])
fractalspecific[fractype].orbitcalc = floatZpowerFractal;
else
fractalspecific[fractype].orbitcalc = floatCmplxZpowerFractal;
get_julia_attractor (param[0], param[1]); /* another attractor? */
break;
case MAGNET2J:
FloatPreCalcMagnet2();
case MAGNET1J:
attr[0].x = 1.0; /* 1.0 + 0.0i always attracts */
attr[0].y = 0.0; /* - both MAGNET1 and MAGNET2 */
attrperiod[0] = 1;
attractors = 1;
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
case LAMBDAFP:
get_julia_attractor (0.0, 0.0); /* another attractor? */
get_julia_attractor (0.5, 0.0); /* another attractor? */
break;
case LAMBDAEXP:
if(parm.y == 0.0)
symmetry=XAXIS;
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
/* Added to account for symmetry in julfn+exp and julfn+zsqrd */
/* JCO 2/29/92 */
case FPJULTRIGPLUSEXP:
case FPJULTRIGPLUSZSQRD:
if(parm.y == 0.0)
symmetry = XAXIS;
else
symmetry = NOSYM;
if ((trigndx[0] == LOG) || (trigndx[0] == 14)) /* LOG or FLIP */
symmetry = NOSYM;
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
case QUATJULFP:
attractors = 0; /* attractors broken since code checks r,i not j,k */
periodicitycheck = 0;
break;
default:
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
}
return(1);
}
MandellongSetup()
{
FgHalf = fudge >> 1;
c_exp = param[2];
if(fractype==MARKSMANDEL && c_exp < 1)
c_exp = 1;
if(fractype==LMANDELZPOWER && c_exp < 1)
c_exp = 1;
if((fractype==MARKSMANDEL && !(c_exp & 1)) ||
(fractype==LMANDELZPOWER && c_exp & 1))
symmetry = XYAXIS_NOPARM; /* odd exponents */
if((fractype==MARKSMANDEL && (c_exp & 1)) || fractype==LMANDELEXP)
symmetry = XAXIS_NOPARM;
if(fractype==SPIDER && periodicitycheck==1)
periodicitycheck=4;
longparm = &linit;
if(fractype==LMANDELZPOWER)
{
if(param[3] == 0.0 && debugflag != 6000 && (double)c_exp == param[2])
fractalspecific[fractype].orbitcalc = longZpowerFractal;
else
fractalspecific[fractype].orbitcalc = longCmplxZpowerFractal;
if(param[3] != 0 || (double)c_exp != param[2] )
symmetry = NOSYM;
}
/* Added to account for symmetry in manfn+exp and manfn+zsqrd */
/* JCO 2/29/92 */
if((fractype==LMANTRIGPLUSEXP)||(fractype==LMANTRIGPLUSZSQRD))
{
if(parm.y == 0.0)
symmetry = XAXIS;
else
symmetry = NOSYM;
if ((trigndx[0] == LOG) || (trigndx[0] == 14)) /* LOG or FLIP */
symmetry = NOSYM;
}
return(1);
}
JulialongSetup()
{
c_exp = param[2];
longparm = &lparm;
switch (fractype)
{
case LJULIAZPOWER:
if((c_exp & 1) || param[3] != 0.0 || (double)c_exp != param[2])
symmetry = NOSYM;
else if(c_exp < 1)
c_exp = 1;
if(param[3] == 0.0 && debugflag != 6000 && (double)c_exp == param[2])
fractalspecific[fractype].orbitcalc = longZpowerFractal;
else
fractalspecific[fractype].orbitcalc = longCmplxZpowerFractal;
break;
case LAMBDA:
get_julia_attractor (0.0, 0.0); /* another attractor? */
get_julia_attractor (0.5, 0.0); /* another attractor? */
break;
case LLAMBDAEXP:
if(lparm.y == 0)
symmetry = XAXIS;
break;
/* Added to account for symmetry in julfn+exp and julfn+zsqrd */
/* JCO 2/29/92 */
case LJULTRIGPLUSEXP:
case LJULTRIGPLUSZSQRD:
if(parm.y == 0.0)
symmetry = XAXIS;
else
symmetry = NOSYM;
if ((trigndx[0] == LOG) || (trigndx[0] == 14)) /* LOG or FLIP */
symmetry = NOSYM;
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
default:
get_julia_attractor (0.0, 0.0); /* another attractor? */
break;
}
return(1);
}
TrigPlusSqrlongSetup()
{
curfractalspecific->per_pixel = julia_per_pixel;
curfractalspecific->orbitcalc = TrigPlusSqrFractal;
if(lparm.x == fudge && lparm.y == 0L && lparm2.y == 0L && debugflag != 90)
{
if(lparm2.x == fudge) /* Scott variant */
curfractalspecific->orbitcalc = ScottTrigPlusSqrFractal;
else if(lparm2.x == -fudge) /* Skinner variant */
curfractalspecific->orbitcalc = SkinnerTrigSubSqrFractal;
}
return(JulialongSetup());
}
TrigPlusSqrfpSetup()
{
curfractalspecific->per_pixel = juliafp_per_pixel;
curfractalspecific->orbitcalc = TrigPlusSqrfpFractal;
if(parm.x == 1.0 && parm.y == 0.0 && parm2.y == 0.0 && debugflag != 90)
{
if(parm2.x == 1.0) /* Scott variant */
curfractalspecific->orbitcalc = ScottTrigPlusSqrfpFractal;
else if(parm2.x == -1.0) /* Skinner variant */
curfractalspecific->orbitcalc = SkinnerTrigSubSqrfpFractal;
}
return(JuliafpSetup());
}
TrigPlusTriglongSetup()
{
FnPlusFnSym();
if(trigndx[1] == SQR)
return(TrigPlusSqrlongSetup());
curfractalspecific->per_pixel = long_julia_per_pixel;
curfractalspecific->orbitcalc = TrigPlusTrigFractal;
if(lparm.x == fudge && lparm.y == 0L && lparm2.y == 0L && debugflag != 90)
{
if(lparm2.x == fudge) /* Scott variant */
curfractalspecific->orbitcalc = ScottTrigPlusTrigFractal;
else if(lparm2.x == -fudge) /* Skinner variant */
curfractalspecific->orbitcalc = SkinnerTrigSubTrigFractal;
}
return(JulialongSetup());
}
TrigPlusTrigfpSetup()
{
FnPlusFnSym();
if(trigndx[1] == SQR)
return(TrigPlusSqrfpSetup());
curfractalspecific->per_pixel = otherjuliafp_per_pixel;
curfractalspecific->orbitcalc = TrigPlusTrigfpFractal;
if(parm.x == 1.0 && parm.y == 0.0 && parm2.y == 0.0 && debugflag != 90)
{
if(parm2.x == 1.0) /* Scott variant */
curfractalspecific->orbitcalc = ScottTrigPlusTrigfpFractal;
else if(parm2.x == -1.0) /* Skinner variant */
curfractalspecific->orbitcalc = SkinnerTrigSubTrigfpFractal;
}
return(JuliafpSetup());
}
FnPlusFnSym() /* set symmetry matrix for fn+fn type */
{
static char far fnplusfn[7][7] =
{/* fn2 ->sin cos sinh cosh exp log sqr */
/* fn1 */
/* sin */ {PI_SYM,XAXIS, XYAXIS, XAXIS, XAXIS, XAXIS, XAXIS},
/* cos */ {XAXIS, PI_SYM,XAXIS, XYAXIS,XAXIS, XAXIS, XAXIS},
/* sinh*/ {XYAXIS,XAXIS, XYAXIS, XAXIS, XAXIS, XAXIS, XAXIS},
/* cosh*/ {XAXIS, XYAXIS,XAXIS, XYAXIS,XAXIS, XAXIS, XAXIS},
/* exp */ {XAXIS, XYAXIS,XAXIS, XAXIS, XYAXIS,XAXIS, XAXIS},
/* log */ {XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS},
/* sqr */ {XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, XYAXIS}
};
if(parm.y == 0.0 && parm2.y == 0.0)
{ if(trigndx[0] < 7 && trigndx[1] < 7) /* bounds of array JCO 5/6/92*/
symmetry = fnplusfn[trigndx[0]][trigndx[1]]; /* JCO 5/6/92 */
} /* defaults to XAXIS symmetry JCO 5/6/92 */
else
symmetry = NOSYM;
return(0);
}
LambdaTrigOrTrigSetup()
{
/* default symmetry is ORIGIN JCO 2/29/92 (changed from PI_SYM) */
if ((trigndx[0] == EXP) || (trigndx[1] == EXP))
symmetry = XAXIS;
if ((trigndx[0] == LOG) || (trigndx[1] == LOG))
symmetry = XAXIS;
get_julia_attractor (0.0, 0.0); /* an attractor? */
return(1);
}
JuliaTrigOrTrigSetup()
{
/* default symmetry is XAXIS */
if(parm.y != 0.0)
symmetry = NOSYM;
get_julia_attractor (0.0, 0.0); /* an attractor? */
return(1);
}
ManlamTrigOrTrigSetup()
{ /* psuedo */
/* default symmetry is XAXIS */
if (trigndx[0] == SQR)
symmetry = NOSYM;
if ((trigndx[0] == LOG) || (trigndx[1] == LOG))
symmetry = NOSYM;
return(1);
}
MandelTrigOrTrigSetup()
{
/* default symmetry is XAXIS_NOPARM */
if ((trigndx[0] == 14) || (trigndx[1] == 14)) /* FLIP JCO 5/28/92 */
symmetry = NOSYM;
return(1);
}
ZXTrigPlusZSetup()
{
/* static char far ZXTrigPlusZSym1[] = */
/* fn1 -> sin cos sinh cosh exp log sqr */
/* {XAXIS,XYAXIS,XAXIS,XYAXIS,XAXIS,NOSYM,XYAXIS}; */
/* static char far ZXTrigPlusZSym2[] = */
/* fn1 -> sin cos sinh cosh exp log sqr */
/* {NOSYM,ORIGIN,NOSYM,ORIGIN,NOSYM,NOSYM,ORIGIN}; */
if(param[1] == 0.0 && param[3] == 0.0)
/* symmetry = ZXTrigPlusZSym1[trigndx[0]]; */
switch(trigndx[0])
{
case COS: /* changed to two case statments and made any added */
case COSH: /* functions default to XAXIS symmetry. JCO 5/25/92 */
case SQR:
case 9: /* 'real' cos */
symmetry = XYAXIS;
break;
case 14: /* FLIP JCO 2/29/92 */
symmetry = YAXIS;
break;
case LOG:
symmetry = NOSYM;
break;
default:
symmetry = XAXIS;
break;
}
else
/* symmetry = ZXTrigPlusZSym2[trigndx[0]]; */
switch(trigndx[0])
{
case COS:
case COSH:
case SQR:
case 9: /* 'real' cos */
symmetry = ORIGIN;
break;
case 14: /* FLIP JCO 2/29/92 */
symmetry = NOSYM;
break;
default:
symmetry = XAXIS;
break;
}
if(curfractalspecific->isinteger)
{
curfractalspecific->orbitcalc = ZXTrigPlusZFractal;
if(lparm.x == fudge && lparm.y == 0L && lparm2.y == 0L && debugflag != 90)
{
if(lparm2.x == fudge) /* Scott variant */
curfractalspecific->orbitcalc = ScottZXTrigPlusZFractal;
else if(lparm2.x == -fudge) /* Skinner variant */
curfractalspecific->orbitcalc = SkinnerZXTrigSubZFractal;
}
return(JulialongSetup());
}
else
{
curfractalspecific->orbitcalc = ZXTrigPlusZfpFractal;
if(parm.x == 1.0 && parm.y == 0.0 && parm2.y == 0.0 && debugflag != 90)
{
if(parm2.x == 1.0) /* Scott variant */
curfractalspecific->orbitcalc = ScottZXTrigPlusZfpFractal;
else if(parm2.x == -1.0) /* Skinner variant */
curfractalspecific->orbitcalc = SkinnerZXTrigSubZfpFractal;
}
}
return(JuliafpSetup());
}
LambdaTrigSetup()
{
int isinteger;
if((isinteger = curfractalspecific->isinteger))
curfractalspecific->orbitcalc = LambdaTrigFractal;
else
curfractalspecific->orbitcalc = LambdaTrigfpFractal;
switch(trigndx[0])
{
case SIN:
case COS:
case 9: /* 'real' cos, added this and default for additional functions */
symmetry = PI_SYM;
if(isinteger)
curfractalspecific->orbitcalc = LambdaTrigFractal1;
else
curfractalspecific->orbitcalc = LambdaTrigfpFractal1;
break;
case SINH:
case COSH:
symmetry = ORIGIN;
if(isinteger)
curfractalspecific->orbitcalc = LambdaTrigFractal2;
else
curfractalspecific->orbitcalc = LambdaTrigfpFractal2;
break;
case SQR:
symmetry = ORIGIN;
break;
case EXP:
if(isinteger)
curfractalspecific->orbitcalc = LongLambdaexponentFractal;
else
curfractalspecific->orbitcalc = LambdaexponentFractal;
symmetry = XAXIS;
break;
case LOG:
symmetry = NOSYM;
break;
default: /* default for additional functions */
symmetry = ORIGIN; /* JCO 5/8/92 */
break;
}
get_julia_attractor (0.0, 0.0); /* an attractor? */
if(isinteger)
return(JulialongSetup());
else
return(JuliafpSetup());
}
JuliafnPlusZsqrdSetup()
{
/* static char far fnpluszsqrd[] = */
/* fn1 -> sin cos sinh cosh sqr exp log */
/* sin {NOSYM,ORIGIN,NOSYM,ORIGIN,ORIGIN,NOSYM,NOSYM}; */
/* symmetry = fnpluszsqrd[trigndx[0]]; JCO 5/8/92 */
switch(trigndx[0]) /* fix sqr symmetry & add additional functions */
{
case COS: /* cosxx */
case COSH:
case SQR:
case 9: /* 'real' cos */
case 10: /* tan */
case 11: /* tanh */
symmetry = ORIGIN;
/* default is for NOSYM symmetry */
}
if(curfractalspecific->isinteger)
return(JulialongSetup());
else
return(JuliafpSetup());
}
SqrTrigSetup()
{
/* static char far SqrTrigSym[] = */
/* fn1 -> sin cos sinh cosh sqr exp log */
/* {PI_SYM,PI_SYM,XYAXIS,XYAXIS,XYAXIS,XAXIS,XAXIS}; */
/* symmetry = SqrTrigSym[trigndx[0]]; JCO 5/9/92 */
switch(trigndx[0]) /* fix sqr symmetry & add additional functions */
{
case SIN:
case COS: /* cosxx */
case 9: /* 'real' cos */
symmetry = PI_SYM;
/* default is for XAXIS symmetry */
}
if(curfractalspecific->isinteger)
return(JulialongSetup());
else
return(JuliafpSetup());
}
FnXFnSetup()
{
static char far fnxfn[7][7] =
{/* fn2 ->sin cos sinh cosh exp log sqr */
/* fn1 */
/* sin */ {PI_SYM,YAXIS, XYAXIS,XYAXIS,XAXIS, NOSYM, XYAXIS},
/* cos */ {YAXIS, PI_SYM,XYAXIS,XYAXIS,XAXIS, NOSYM, XYAXIS},
/* sinh*/ {XYAXIS,XYAXIS,XYAXIS,XYAXIS,XAXIS, NOSYM, XYAXIS},
/* cosh*/ {XYAXIS,XYAXIS,XYAXIS,XYAXIS,XAXIS, NOSYM, XYAXIS},
/* exp */ {XAXIS, XAXIS, XAXIS, XAXIS, XAXIS, NOSYM, XYAXIS},
/* log */ {NOSYM, NOSYM, NOSYM, NOSYM, NOSYM, XAXIS, NOSYM},
/* sqr */ {XYAXIS,XYAXIS,XYAXIS,XYAXIS,XYAXIS,NOSYM, XYAXIS},
};
/*
if(trigndx[0]==EXP || trigndx[0]==LOG || trigndx[1]==EXP || trigndx[1]==LOG)
symmetry = XAXIS;
else if((trigndx[0]==SIN && trigndx[1]==SIN)||(trigndx[0]==COS && trigndx[1]==COS))
symmetry = PI_SYM;
else if((trigndx[0]==SIN && trigndx[1]==COS)||(trigndx[0]==COS && trigndx[1]==SIN))
symmetry = YAXIS;
else
symmetry = XYAXIS;
*/
if(trigndx[0] < 7 && trigndx[1] < 7) /* bounds of array JCO 5/22/92*/
symmetry = fnxfn[trigndx[0]][trigndx[1]]; /* JCO 5/22/92 */
/* defaults to XAXIS symmetry JCO 5/22/92 */
else { /* added to complete the symmetry JCO 5/22/92 */
if (trigndx[0]==LOG || trigndx[1] ==LOG) symmetry = NOSYM;
if (trigndx[0]==9 || trigndx[1] ==9) { /* 'real' cos */
if (trigndx[0]==SIN || trigndx[1] ==SIN) symmetry = PI_SYM;
if (trigndx[0]==COS || trigndx[1] ==COS) symmetry = PI_SYM;
}
if (trigndx[0]==9 && trigndx[1] ==9) symmetry = PI_SYM;
}
if(curfractalspecific->isinteger)
return(JulialongSetup());
else
return(JuliafpSetup());
}
MandelTrigSetup()
{
int isinteger;
if((isinteger = curfractalspecific->isinteger))
curfractalspecific->orbitcalc = LambdaTrigFractal;
else
curfractalspecific->orbitcalc = LambdaTrigfpFractal;
symmetry = XYAXIS_NOPARM;
switch(trigndx[0])
{
case SIN:
case COS:
if(isinteger)
curfractalspecific->orbitcalc = LambdaTrigFractal1;
else
curfractalspecific->orbitcalc = LambdaTrigfpFractal1;
break;
case SINH:
case COSH:
if(isinteger)
curfractalspecific->orbitcalc = LambdaTrigFractal2;
else
curfractalspecific->orbitcalc = LambdaTrigfpFractal2;
break;
case EXP:
symmetry = XAXIS_NOPARM;
if(isinteger)
curfractalspecific->orbitcalc = LongLambdaexponentFractal;
else
curfractalspecific->orbitcalc = LambdaexponentFractal;
break;
case LOG:
symmetry = XAXIS_NOPARM;
break;
default: /* added for additional functions, JCO 5/25/92 */
symmetry = XYAXIS_NOPARM;
break;
}
if(isinteger)
return(MandellongSetup());
else
return(MandelfpSetup());
}
MarksJuliaSetup()
{
c_exp = param[2];
longparm = &lparm;
lold = *longparm;
if(c_exp > 2)
lcpower(&lold,c_exp,&lcoefficient,bitshift);
else if(c_exp == 2)
{
lcoefficient.x = multiply(lold.x,lold.x,bitshift) - multiply(lold.y,lold.y,bitshift);
lcoefficient.y = multiply(lold.x,lold.y,bitshiftless1);
}
else if(c_exp < 2)
lcoefficient = lold;
get_julia_attractor (0.0, 0.0); /* an attractor? */
return(1);
}
SierpinskiSetup()
{
/* sierpinski */
periodicitycheck = 0; /* disable periodicity checks */
ltmp.x = 1;
ltmp.x = ltmp.x << bitshift; /* ltmp.x = 1 */
ltmp.y = ltmp.x >> 1; /* ltmp.y = .5 */
return(1);
}
SierpinskiFPSetup()
{
/* sierpinski */
periodicitycheck = 0; /* disable periodicity checks */
tmp.x = 1;
tmp.y = 0.5;
return(1);
}
extern char usr_floatflag;
HalleySetup()
{
/* Halley */
periodicitycheck=0;
if(usr_floatflag)
fractype = HALLEY; /* float on */
else
fractype = MPHALLEY;
curfractalspecific = &fractalspecific[fractype];
degree = (int)parm.x;
if(degree < 2)
degree = 2;
param[0] = (double)degree;
/* precalculated values */
AplusOne = degree + 1; /* a+1 */
Ap1deg = AplusOne * degree;
#ifndef XFRACT
if(fractype == MPHALLEY) {
setMPfunctions();
mpAplusOne = *pd2MP((double)AplusOne);
mpAp1deg = *pd2MP((double)Ap1deg);
mpdegree = *pd2MP((double)degree);
mptmpparmy = *pd2MP(parm.y);
mptmpparm2x = *pd2MP(parm2.x);
mpone = *pd2MP(1.0);
}
#endif
if(degree % 2)
symmetry = XAXIS; /* odd */
else
symmetry = XYAXIS; /* even */
return(1);
}
StandardSetup()
{
if(fractype==UNITYFP)
periodicitycheck=0;
return(1);
}